Two-Timescale Critic-Actor for Average Reward MDPs with Function Approximation
- URL: http://arxiv.org/abs/2402.01371v3
- Date: Mon, 16 Dec 2024 16:17:46 GMT
- Title: Two-Timescale Critic-Actor for Average Reward MDPs with Function Approximation
- Authors: Prashansa Panda, Shalabh Bhatnagar,
- Abstract summary: We present the first two-timescale critic-actor algorithm with function approximation in the long-run average reward setting.
We also present the first finite-time non-asymptotic algorithm as well as convergence analysis for such a scheme.
- Score: 5.945710235932345
- License:
- Abstract: Several recent works have focused on carrying out non-asymptotic convergence analyses for AC algorithms. Recently, a two-timescale critic-actor algorithm has been presented for the discounted cost setting in the look-up table case where the timescales of the actor and the critic are reversed and only asymptotic convergence shown. In our work, we present the first two-timescale critic-actor algorithm with function approximation in the long-run average reward setting and present the first finite-time non-asymptotic as well as asymptotic convergence analysis for such a scheme. We obtain optimal learning rates and prove that our algorithm achieves a sample complexity of {$\mathcal{\tilde{O}}(\epsilon^{-(2+\delta)})$ with $\delta >0$ arbitrarily close to zero,} for the mean squared error of the critic to be upper bounded by $\epsilon$ which is better than the one obtained for two-timescale AC in a similar setting. A notable feature of our analysis is that we present the asymptotic convergence analysis of our scheme in addition to the finite-time bounds that we obtain and show the almost sure asymptotic convergence of the (slower) critic recursion to the attractor of an associated differential inclusion with actor parameters corresponding to local maxima of a perturbed average reward objective. We also show the results of numerical experiments on three benchmark settings and observe that our critic-actor algorithm performs the best amongst all algorithms.
Related papers
- Improved Sample Complexity for Global Convergence of Actor-Critic Algorithms [49.19842488693726]
We establish the global convergence of the actor-critic algorithm with a significantly improved sample complexity of $O(epsilon-3)$.
Our findings provide theoretical support for many algorithms that rely on constant step sizes.
arXiv Detail & Related papers (2024-10-11T14:46:29Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Non-Asymptotic Analysis for Single-Loop (Natural) Actor-Critic with Compatible Function Approximation [18.77565744533582]
Actor-critic (AC) is a powerful method for learning an optimal policy in reinforcement learning.
AC converges to an $epsilon+varepsilon_textcritic$ neighborhood of stationary points with the best known sample complexity.
This paper analyzes the convergence of both AC and NAC algorithms with compatible function approximation.
arXiv Detail & Related papers (2024-06-03T20:05:04Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random
Perturbations for Stochastic Optimization [10.820943271350442]
We present a convex gradient algorithm for minimizing a smooth objective function that is an expectation over noisy cost samples.
We also show that our algorithm avoids the ratelibria, implying convergence to local minima.
arXiv Detail & Related papers (2022-07-30T18:50:36Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Non-asymptotic Convergence Analysis of Two Time-scale (Natural)
Actor-Critic Algorithms [58.57004511121862]
Actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies.
We show that two time-scale AC requires the overall sample complexity at the order of $mathcalO(epsilon-2.5log3(epsilon-1))$ to attain an $epsilon$-accurate stationary point.
We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling.
arXiv Detail & Related papers (2020-05-07T15:42:31Z) - A Finite Time Analysis of Two Time-Scale Actor Critic Methods [87.69128666220016]
We provide a non-asymptotic analysis for two time-scale actor-critic methods under non-i.i.d. setting.
We prove that the actor-critic method is guaranteed to find a first-order stationary point.
This is the first work providing finite-time analysis and sample complexity bound for two time-scale actor-critic methods.
arXiv Detail & Related papers (2020-05-04T09:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.