論文の概要: ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data
- arxiv url: http://arxiv.org/abs/2402.01393v3
- Date: Tue, 30 Jul 2024 11:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 22:15:57.114281
- Title: ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data
- Title(参考訳): ALERT-Transformer:リアルタイムイベントベースの時空間データのための非同期・同期機械学習
- Authors: Carmen Martin-Turrero, Maxence Bouvier, Manuel Breitenstein, Pietro Zanuttigh, Vincent Parret,
- Abstract要約: 非同期センシングと同期処理を組み合わせたハイブリッドパイプラインを提案する。
競争相手よりもレイテンシの低い最先端のパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 8.660721666999718
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.
- Abstract(参考訳): 我々は,高密度機械学習モデルを用いたイベントベースセンサによって生成された,連続的超スパース時空間データの古典的処理を実現することを目的とする。
1)ポイントネットモデルに基づく組込み -- ALERTモジュール -- をベースとした,新しいイベントと古いイベントを連続的に統合可能な,非同期センシングと同期処理を組み合わせた,新しいハイブリッドパイプラインを提案する。(2)任意のサンプリングレートで常に最新の機能を備えたダウンストリームモデルをフィード可能な,組込みデータのフレキシブルな読み出し,(3)Vision Transformerにインスパイアされたパッチベースのアプローチによる,メソッドの効率の最適化。
これらの埋め込みは、オブジェクト認識とジェスチャー認識のために訓練されたトランスフォーマーモデルによって処理される。
このアプローチを用いることで、競合他社よりもレイテンシの低い最先端のパフォーマンスを実現します。
また、非同期モデルが任意のサンプリングレートで動作可能であることも示しています。
関連論文リスト
- Diffusion Auto-regressive Transformer for Effective Self-supervised Time Series Forecasting [47.58016750718323]
我々はTimeDARTと呼ばれる新しい自己管理手法を提案する。
TimeDARTは、時系列データ内のグローバルシーケンス依存とローカル詳細特徴の両方をキャプチャする。
私たちのコードはhttps://github.com/Melmaphother/TimeDART.comで公開されています。
論文 参考訳(メタデータ) (2024-10-08T06:08:33Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
本研究では、モーションキャプチャー(MoCap)シーケンスを用いた人間の行動認識の問題点について検討する。
メッシュシーケンスを直接モデル化する新しい時空間メッシュ変換器(STMT)を提案する。
提案手法は,スケルトンベースモデルやポイントクラウドベースモデルと比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-31T16:19:27Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Federated Action Recognition on Heterogeneous Embedded Devices [16.88104153104136]
本研究では,限られた計算能力を持つクライアントが行動認識を行うことを可能にする。
我々はまず,大規模なデータセットの知識蒸留を通じて,中央サーバでモデル圧縮を行う。
より小さなデータセットに存在する限られたデータは、アクション認識モデルが複雑な時間的特徴を学習するのに十分なものではないため、微調整が必要である。
論文 参考訳(メタデータ) (2021-07-18T02:33:24Z) - Real-time End-to-End Federated Learning: An Automotive Case Study [16.79939549201032]
本稿では,新しい非同期モデルアグリゲーションプロトコルと組み合わさったリアルタイムエンドツーエンドフェデレーション学習のアプローチを提案する。
その結果,非同期フェデレーション学習は,局所エッジモデルの予測性能を大幅に向上させ,集中型機械学習法と同じ精度に到達できることがわかった。
論文 参考訳(メタデータ) (2021-03-22T14:16:16Z) - Robust Motion In-betweening [17.473287573543065]
本稿では,3次元アニメーターのための新しいツールとして機能する,新しい頑健な遷移生成技術を提案する。
このシステムは、時間的にスパーサをアニメーションの制約として使用する高品質な動作を合成する。
私たちは、トレーニングされたモデルを使用して運用シナリオで相互運用を行う、カスタムのMotionBuilderプラグインを紹介します。
論文 参考訳(メタデータ) (2021-02-09T16:52:45Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
イベントカメラはバイオインスパイアされたセンサーで、非同期でスパースな「イベント」の形で画素ごとの明るさ変化に反応する。
同期画像のようなイベント表現で訓練されたモデルを、同じ出力を持つ非同期モデルに変換するための一般的なフレームワークを提案する。
理論的および実験的に、これは高容量同期ニューラルネットワークの計算複雑性と遅延を大幅に減少させることを示す。
論文 参考訳(メタデータ) (2020-03-20T08:39:49Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。