論文の概要: Simulation-based optimization of a production system topology -- a
neural network-assisted genetic algorithm
- arxiv url: http://arxiv.org/abs/2402.01511v1
- Date: Fri, 2 Feb 2024 15:52:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 14:40:07.482904
- Title: Simulation-based optimization of a production system topology -- a
neural network-assisted genetic algorithm
- Title(参考訳): シミュレーションに基づく生産システムトポロジーの最適化 --ニューラルネットワーク支援遺伝的アルゴリズム
- Authors: N. Paape, J.A.W.M. van Eekelen, M.A. Reniers
- Abstract要約: 遺伝的アルゴリズム(GA)を用いた生産システムのトポロジー最適化のための新しい手法を提案する
GAの拡張では、ニューラルネットワークがシミュレーションの代理モデルとして機能する。
どちらの手法も、産業環境で最適解を見つけるのに効果的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is an abundance of prior research on the optimization of production
systems, but there is a research gap when it comes to optimizing which
components should be included in a design, and how they should be connected. To
overcome this gap, a novel approach is presented for topology optimization of
production systems using a genetic algorithm (GA). This GA employs
similarity-based mutation and recombination for the creation of offspring, and
discrete-event simulation for fitness evaluation. To reduce computational cost,
an extension to the GA is presented in which a neural network functions as a
surrogate model for simulation. Three types of neural networks are compared,
and the type most effective as a surrogate model is chosen based on its
optimization performance and computational cost.
Both the unassisted GA and neural network-assisted GA are applied to an
industrial case study and a scalability case study. These show that both
approaches are effective at finding the optimal solution in industrial
settings, and both scale well as the number of potential solutions increases,
with the neural network-assisted GA having the better scalability of the two.
- Abstract(参考訳): プロダクションシステムの最適化に関する先行研究は数多く存在するが、どのコンポーネントを設計に含めるべきか、どのように接続すべきかについては、研究のギャップがある。
このギャップを克服するために,遺伝的アルゴリズム(GA)を用いた生産システムのトポロジ最適化手法を提案する。
このGAは、子作りに類似性に基づく突然変異と組換えを用い、フィットネス評価には離散イベントシミュレーションを用いる。
計算コストを低減するために、ニューラルネットワークがシミュレーションの代理モデルとして機能するGAの拡張を示す。
3種類のニューラルネットワークを比較し、その最適化性能と計算コストに基づいて、代理モデルとして最も有効なタイプを選択する。
インダストリアルケーススタディと拡張性ケーススタディに、非アシストGAとニューラルネットワークアシストGAの両方を適用した。
これらの結果は、両方のアプローチが産業環境で最適なソリューションを見つけるのに効果的であることを示し、両方がスケールし、潜在的なソリューションの数が増加することを示している。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks [2.0072624123275533]
一般化されたガウスニュートン(GGN)最適化法は、曲率推定を解法に組み込む。
本研究では、2層ニューラルネットワークを明示的な正規化で最適化するGGN法について検討する。
論文 参考訳(メタデータ) (2024-04-23T10:02:22Z) - Optimal feature rescaling in machine learning based on neural networks [0.0]
遺伝的アルゴリズム(GA)により入力特徴の最適再スケーリング(OFR)を行う。
OFRは、トレーニングに使用される勾配ベースのアルゴリズムの条件付けを改善する入力空間を再設定する。
この手法は、実産業プロセスの結果をモデル化したFFNNでテストされている。
論文 参考訳(メタデータ) (2024-02-13T21:57:31Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
本研究の目的は、人口ベースメタヒューリスティックアルゴリズムを用いて、ニューラルネットワーク(NN)重み付けを最適化するための代替アプローチを分析することである。
Grey Wolf (GWO) と Genetic Modified Algorithms (GA) のハイブリッドをグラディエント・Descent (SGD) と組み合わせて検討した。
このアルゴリズムは、高次元性の問題にも対処しながら、エクスプロイトと探索の組み合わせを可能にする。
論文 参考訳(メタデータ) (2023-01-21T13:22:09Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。