Enhancing Stochastic Gradient Descent: A Unified Framework and Novel
Acceleration Methods for Faster Convergence
- URL: http://arxiv.org/abs/2402.01515v1
- Date: Fri, 2 Feb 2024 15:55:25 GMT
- Title: Enhancing Stochastic Gradient Descent: A Unified Framework and Novel
Acceleration Methods for Faster Convergence
- Authors: Yichuan Deng, Zhao Song, Chiwun Yang
- Abstract summary: We propose a unified framework to address convergence under two pluggrad convergence conditions.
We show that these two methods can theoretically lead to an A in rate.
- Score: 9.668078830796999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on SGD, previous works have proposed many algorithms that have improved
convergence speed and generalization in stochastic optimization, such as SGDm,
AdaGrad, Adam, etc. However, their convergence analysis under non-convex
conditions is challenging. In this work, we propose a unified framework to
address this issue. For any first-order methods, we interpret the updated
direction $g_t$ as the sum of the stochastic subgradient $\nabla f_t(x_t)$ and
an additional acceleration term $\frac{2|\langle v_t, \nabla f_t(x_t)
\rangle|}{\|v_t\|_2^2} v_t$, thus we can discuss the convergence by analyzing
$\langle v_t, \nabla f_t(x_t) \rangle$. Through our framework, we have
discovered two plug-and-play acceleration methods: \textbf{Reject Accelerating}
and \textbf{Random Vector Accelerating}, we theoretically demonstrate that
these two methods can directly lead to an improvement in convergence rate.
Related papers
- Stochastic Newton Proximal Extragradient Method [18.47705532817026]
We propose a novel Newton extragradient method that improves these bounds.
We accomplish this by extending the Hybrid Proximal Extragradient (HPE) framework.
arXiv Detail & Related papers (2024-06-03T16:06:23Z) - Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation [51.248784084461334]
We prove new convergence rates for a generalized version of Nesterov acceleration underrho conditions.
Our analysis reduces the dependence on the strong growth constant from $$ to $sqrt$ as compared to prior work.
arXiv Detail & Related papers (2024-04-03T00:41:19Z) - Accelerated Quasi-Newton Proximal Extragradient: Faster Rate for Smooth
Convex Optimization [26.328847475942894]
We prove that our method can achieve a convergence rate of $Obigl(minfrac1k2, fracsqrtdlog kk2.5bigr)$, where $d$ is the problem dimension and $k$ is the number of iterations.
To the best of our knowledge, this result is the first to demonstrate a provable gain of a quasi-Newton-type method over Nesterov's accelerated gradient.
arXiv Detail & Related papers (2023-06-03T23:31:27Z) - Extra-Newton: A First Approach to Noise-Adaptive Accelerated
Second-Order Methods [57.050204432302195]
This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions.
Our algorithm achieves $O(sigma / sqrtT)$ convergence when the oracle feedback is with variance $sigma2$, and improves its convergence to $O( 1 / T3)$ with deterministic oracles.
arXiv Detail & Related papers (2022-11-03T14:12:51Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - Nesterov Accelerated Shuffling Gradient Method for Convex Optimization [15.908060383231371]
We show that our algorithm has an improved rate of $mathcalO (1/T)$ using unified shuffling schemes.
Our convergence analysis does not require an assumption on bounded domain or a bounded gradient condition.
Numerical simulations demonstrate the efficiency of our algorithm.
arXiv Detail & Related papers (2022-02-07T21:23:17Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
In this work, we adapt the integral quadratic constraints theory to first-order methods for smooth and strongly-varying games and iteration.
We provide emphfor the first time a global convergence rate for the negative momentum method(NM) with an complexity $mathcalO(kappa1.5)$, which matches its known lower bound.
We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch.
arXiv Detail & Related papers (2020-09-23T20:02:00Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Almost sure convergence rates for Stochastic Gradient Descent and
Stochastic Heavy Ball [17.33867778750777]
We study gradient descent (SGD) and the heavy ball method (SHB) for the general approximation problem.
For SGD, in the convex and smooth setting, we provide the first emphalmost sure convergence emphrates for a weighted average of the iterates.
arXiv Detail & Related papers (2020-06-14T11:12:05Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.