Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
- URL: http://arxiv.org/abs/2404.02378v1
- Date: Wed, 3 Apr 2024 00:41:19 GMT
- Title: Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
- Authors: Aaron Mishkin, Mert Pilanci, Mark Schmidt,
- Abstract summary: We prove new convergence rates for a generalized version of Nesterov acceleration underrho conditions.
Our analysis reduces the dependence on the strong growth constant from $$ to $sqrt$ as compared to prior work.
- Score: 51.248784084461334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated SGD under the strong growth condition. In this special case, our analysis reduces the dependence on the strong growth constant from $\rho$ to $\sqrt{\rho}$ as compared to prior work. This improvement is comparable to a square-root of the condition number in the worst case and address criticism that guarantees for stochastic acceleration could be worse than those for SGD.
Related papers
- Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Benign Underfitting of Stochastic Gradient Descent [72.38051710389732]
We study to what extent may gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit training data.
We analyze the closely related with-replacement SGD, for which an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate.
arXiv Detail & Related papers (2022-02-27T13:25:01Z) - On Almost Sure Convergence Rates of Stochastic Gradient Methods [11.367487348673793]
We show for the first time that the almost sure convergence rates obtained for gradient methods are arbitrarily close to their optimal convergence rates possible.
For non- objective functions, we only show that a weighted average of squared gradient norms converges not almost surely, but also lasts to zero almost surely.
arXiv Detail & Related papers (2022-02-09T06:05:30Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Escaping Saddle Points Faster with Stochastic Momentum [9.485782209646445]
In deep networks, momentum appears to significantly improve convergence time.
We show that momentum improves deep training because it modifies SGD to escape points faster.
We also show how to choose the ideal momentum parameter.
arXiv Detail & Related papers (2021-06-05T23:34:02Z) - Convergence of Gradient Algorithms for Nonconvex $C^{1+\alpha}$ Cost
Functions [2.538209532048867]
We show a byproduct that a gradient converges and provide an explicit upper bound on the convergence rate.
This allows us to prove the almost sure convergence by Doobmartin's supergale convergence theorem.
arXiv Detail & Related papers (2020-12-01T16:48:59Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Almost sure convergence rates for Stochastic Gradient Descent and
Stochastic Heavy Ball [17.33867778750777]
We study gradient descent (SGD) and the heavy ball method (SHB) for the general approximation problem.
For SGD, in the convex and smooth setting, we provide the first emphalmost sure convergence emphrates for a weighted average of the iterates.
arXiv Detail & Related papers (2020-06-14T11:12:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.