論文の概要: Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation
- arxiv url: http://arxiv.org/abs/2402.01542v4
- Date: Fri, 19 Jul 2024 17:48:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 23:56:51.445689
- Title: Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation
- Title(参考訳): 物理に着想を得た測地学補間による合成データ拡張による集団変数の学習
- Authors: Soojung Yang, Juno Nam, Johannes C. B. Dietschreit, Rafael Gómez-Bombarelli,
- Abstract要約: 分子動力学シミュレーションでは、タンパク質の折り畳みのようなまれな事象は、通常、強化されたサンプリング技術を用いて研究される。
本研究では,タンパク質の折り畳み遷移に類似した測地線を生成するために物理に着想を得た指標を用いたシミュレーションフリーなデータ拡張戦略を提案する。
- 参考スコア(独自算出の注目度): 1.4972659820929493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In molecular dynamics simulations, rare events, such as protein folding, are typically studied using enhanced sampling techniques, most of which are based on the definition of a collective variable (CV) along which acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. This new data can be used to improve the accuracy of classifier-based methods. Alternatively, a regression-based learning scheme for CV models can be adopted by leveraging the interpolation progress parameter.
- Abstract(参考訳): 分子動力学シミュレーションでは、タンパク質の折り畳みのようなまれな事象は、通常、強化されたサンプリング技術を用いて研究され、その多くは加速が起こる集合変数(CV)の定義に基づいている。
表現力のあるCVを持つことは重要であるが、しばしば特定の事象に関する情報の欠如、例えば、展開された状態から折り畳みされたコンフォメーションへの遷移によって妨げられる。
本研究では,タンパク質の折りたたみ遷移に似た測地的補間を生成するため,物理に着想を得た指標を用いたシミュレーションフリーなデータ拡張戦略を提案し,真の遷移状態サンプルを使わずにサンプリング効率を向上させる。
この新しいデータは、分類器ベースの手法の精度を向上させるために使用できる。
あるいは、補間進行パラメータを活用することにより、CVモデルの回帰に基づく学習方式を採用することができる。
関連論文リスト
- Data-driven path collective variables [0.0]
本稿では,集合変数の生成,最適化,比較のための新しい手法を提案する。
結果として得られる集合変数は1次元、解釈可能、微分可能である。
2つの異なるアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2023-12-21T14:07:47Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations [2.6009298669020477]
多様体学習のための異方性拡散写像に基づくフレームワークを提供する。
この枠組みは平衡密度を正確に記述したCVを生じるバイアス効果を逆転させることを示す。
標準および改良されたサンプリングシミュレーションから得られたデータについて,多くの多様体学習手法で利用できることを示す。
論文 参考訳(メタデータ) (2022-07-29T08:59:56Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Efficient Characterization of Dynamic Response Variation Using
Multi-Fidelity Data Fusion through Composite Neural Network [9.446974144044733]
構造力学解析における多レベル応答予測の機会を利用する。
得られた多レベル異種データセットを完全に活用できる複合ニューラルネットワーク融合手法を定式化する。
論文 参考訳(メタデータ) (2020-05-07T02:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。