論文の概要: Immersive Video Compression using Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2402.01596v1
- Date: Fri, 2 Feb 2024 17:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 14:03:44.781700
- Title: Immersive Video Compression using Implicit Neural Representations
- Title(参考訳): 暗黙的神経表現を用いた没入型ビデオ圧縮
- Authors: Ho Man Kwan, Fan Zhang, Andrew Gower, David Bull
- Abstract要約: MV-HiNeRVは最先端のINRベースのビデオHiNeRVの拡張版である。
ビュー毎に異なる機能グリッドのグループを学習するためにモデルを修正し、学習したネットワークパラメータをすべてのビューで共有しました。
提案手法は,MPEG Immersive Video (MIV) Common Test Conditionsにおいて,マルチビューテクスチャと深度ビデオの圧縮に用いる。
- 参考スコア(独自算出の注目度): 4.13899730757205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work on implicit neural representations (INRs) has evidenced their
potential for efficiently representing and encoding conventional video content.
In this paper we, for the first time, extend their application to immersive
(multi-view) videos, by proposing MV-HiNeRV, a new INR-based immersive video
codec. MV-HiNeRV is an enhanced version of a state-of-the-art INR-based video
codec, HiNeRV, which was developed for single-view video compression. We have
modified the model to learn a different group of feature grids for each view,
and share the learnt network parameters among all views. This enables the model
to effectively exploit the spatio-temporal and the inter-view redundancy that
exists within multi-view videos. The proposed codec was used to compress
multi-view texture and depth video sequences in the MPEG Immersive Video (MIV)
Common Test Conditions, and tested against the MIV Test model (TMIV) that uses
the VVenC video codec. The results demonstrate the superior performance of
MV-HiNeRV, with significant coding gains (up to 72.33%) over TMIV. The
implementation of MV-HiNeRV will be published for further development and
evaluation.
- Abstract(参考訳): 暗黙的ニューラルネットワーク表現(inrs)に関する最近の研究は、従来のビデオコンテンツを効率的に表現しエンコーディングする可能性を示している。
本稿では,新しいINRベースの没入型ビデオコーデックであるMV-HiNeRVを提案することにより,初めて没入型(マルチビュー)ビデオにアプリケーションを拡張した。
MV-HiNeRVは、シングルビュービデオ圧縮用に開発された最先端のINRベースのビデオコーデック、HiNeRVの拡張版である。
ビュー毎に異なる機能グリッドのグループを学習するためにモデルを修正し、学習したネットワークパラメータをすべてのビューで共有しました。
これにより、モデルがマルチビュービデオに存在する時空間とビュー間の冗長性を効果的に活用することができる。
提案コーデックはMPEG Immersive Video (MIV) Common Test Conditionsのマルチビューテクスチャと深度ビデオシーケンスを圧縮するために用いられ、VVenCビデオコーデックを用いたMIVテストモデル(TMIV)に対してテストされた。
その結果、MV-HiNeRVの優れた性能が示され、TMIVよりも72.33%のコーディングが向上した。
MV-HiNeRVの実装は、さらなる開発と評価のために公表される。
関連論文リスト
- NVRC: Neural Video Representation Compression [13.131842990481038]
我々は、新しいINRベースのビデオ圧縮フレームワーク、Neural Video Representation Compression (NVRC)を提案する。
NVRCは初めて、INRベースのビデオをエンドツーエンドで最適化することができる。
実験の結果,NVRCは従来のベンチマークエントロピーよりも優れていた。
論文 参考訳(メタデータ) (2024-09-11T16:57:12Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
CMVC(Cross-Modality Video Coding)は、ビデオ符号化における多モード表現とビデオ生成モデルを探索する先駆的な手法である。
復号化の際には、以前に符号化されたコンポーネントとビデオ生成モデルを利用して複数の復号モードを生成する。
TT2Vは効果的な意味再構成を実現し,IT2Vは競争力のある知覚整合性を示した。
論文 参考訳(メタデータ) (2024-08-15T11:36:18Z) - MNeRV: A Multilayer Neural Representation for Videos [1.1079931610880582]
ビデオのための多層ニューラル表現(MNeRV)を提案し、新しいデコーダM-デコーダとそのマッチングエンコーダM-エンコーダを設計する。
MNeRVは、より多くのエンコーディング層とデコード層を持ち、冗長なモデルパラメータの問題を効果的に軽減する。
ビデオレグレッション再構成の分野では、より少ないパラメータでより良い再現品質(+4.06 PSNR)を達成する。
論文 参考訳(メタデータ) (2024-07-10T03:57:29Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - HiNeRV: Video Compression with Hierarchical Encoding-based Neural
Representation [14.088444622391501]
Implicit Representations (INRs) は画像やビデオのコンテントの表現や圧縮に使われてきた。
既存のINRベースの手法は、ビデオ圧縮の最先端技術に匹敵する速度性能を達成できなかった。
軽量層と階層的位置符号化を組み合わせたINRであるHiNeRVを提案する。
論文 参考訳(メタデータ) (2023-06-16T12:59:52Z) - DNeRV: Modeling Inherent Dynamics via Difference Neural Representation
for Videos [53.077189668346705]
映像の差分表現(eRV)
我々はこれを制限関数の適合性とフレーム差の重要性の観点から分析する。
DNeRVは最先端のニューラル圧縮アプローチと競合する結果を得る。
論文 参考訳(メタデータ) (2023-04-13T13:53:49Z) - HNeRV: A Hybrid Neural Representation for Videos [56.492309149698606]
暗黙の神経表現は、動画をニューラルネットワークとして保存する。
ビデオ用ハイブリッドニューラル表現法(HNeRV)を提案する。
コンテンツ適応型埋め込みと再設計アーキテクチャにより、HNeRVはビデオレグレッションタスクにおいて暗黙のメソッドよりも優れる。
論文 参考訳(メタデータ) (2023-04-05T17:55:04Z) - Towards Scalable Neural Representation for Diverse Videos [68.73612099741956]
Inlicit Neural representations (INR)は、3Dシーンや画像の表現において注目を集めている。
既存のINRベースの手法は、冗長な視覚コンテンツを持つ短いビデオの符号化に限られている。
本稿では,多種多様な視覚コンテンツを持つ長編・多作ビデオの符号化のためのニューラル表現の開発に焦点をあてる。
論文 参考訳(メタデータ) (2023-03-24T16:32:19Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
我々は,学習可能な位置特徴(NVP)を用いて,映像を潜時符号として効果的に再生するニューラル表現の訓練方法を示す。
一般的なUVGベンチマークにおけるNVPの優位性を実証し,先行技術と比較して,NVPは2倍の速度(5分以内)で走行するだけでなく,符号化品質も34.07rightarrow$34.57(PSNR測定値で測定)に上回っている。
論文 参考訳(メタデータ) (2022-10-13T08:15:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。