Can LLMs Compute with Reasons?
- URL: http://arxiv.org/abs/2402.12080v1
- Date: Mon, 19 Feb 2024 12:04:25 GMT
- Title: Can LLMs Compute with Reasons?
- Authors: Harshit Sandilya, Peehu Raj, Jainit Sushil Bafna, Srija Mukhopadhyay,
Shivansh Sharma, Ellwil Sharma, Arastu Sharma, Neeta Trivedi, Manish
Shrivastava, Rajesh Kumar
- Abstract summary: Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers.
We propose an "Inductive Learning" approach utilizing a distributed network of Small LangSLMs.
- Score: 4.995189458714599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) often struggle with complex mathematical tasks,
prone to "hallucinating" incorrect answers due to their reliance on statistical
patterns. This limitation is further amplified in average Small LangSLMs with
limited context and training data. To address this challenge, we propose an
"Inductive Learning" approach utilizing a distributed network of SLMs. This
network leverages error-based learning and hint incorporation to refine the
reasoning capabilities of SLMs. Our goal is to provide a framework that
empowers SLMs to approach the level of logic-based applications achieved by
high-parameter models, potentially benefiting any language model. Ultimately,
this novel concept paves the way for bridging the logical gap between humans
and LLMs across various fields.
Related papers
- Causality for Large Language Models [37.10970529459278]
Large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks.
Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it.
This survey aims to explore how causality can enhance LLMs at every stage of their lifecycle.
arXiv Detail & Related papers (2024-10-20T07:22:23Z) - Logically Consistent Language Models via Neuro-Symbolic Integration [14.317886666902822]
Large language models (LLMs) are a promising venue for natural language understanding and generation.
LLMs are prone to generating non-factual information and to contradicting themselves when prompted to reason about relations between entities of the world.
We introduce a loss based on neuro-symbolic reasoning that teaches an LLM to be logically consistent with an external set of facts and rules.
arXiv Detail & Related papers (2024-09-09T10:52:57Z) - Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning [2.313664320808389]
This study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL)
We design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination.
Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs.
arXiv Detail & Related papers (2024-08-23T16:02:54Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
There is considerable confusion about the role of Large Language Models (LLMs) in planning and reasoning tasks.
We argue that auto-regressive LLMs cannot, by themselves, do planning or self-verification.
We present a vision of bf LLM-Modulo Frameworks that combine the strengths of LLMs with external model-based verifiers.
arXiv Detail & Related papers (2024-02-02T14:43:18Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.