Explaining latent representations of generative models with large multimodal models
- URL: http://arxiv.org/abs/2402.01858v3
- Date: Thu, 18 Apr 2024 03:54:39 GMT
- Title: Explaining latent representations of generative models with large multimodal models
- Authors: Mengdan Zhu, Zhenke Liu, Bo Pan, Abhinav Angirekula, Liang Zhao,
- Abstract summary: Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence.
We propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model.
- Score: 5.9908087713968925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence. With the rise of the large multimodal model, it can align images with text to generate answers. In this work, we propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model. We further measure the uncertainty of our generated explanations, quantitatively evaluate the performance of explanation generation among multiple large multimodal models, and qualitatively visualize the variations of each latent variable to learn the disentanglement effects of different generative models on explanations. Finally, we discuss the explanatory capabilities and limitations of state-of-the-art large multimodal models.
Related papers
- Learning Multimodal Latent Generative Models with Energy-Based Prior [3.6648642834198797]
We propose a novel framework that integrates the latent generative model with the EBM.
This approach results in a more expressive and informative prior, better-capturing of information across multiple modalities.
arXiv Detail & Related papers (2024-09-30T01:38:26Z) - Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond [48.43910061720815]
Multi-modal generative AI has received increasing attention in both academia and industry.
One natural question arises: Is it possible to have a unified model for both understanding and generation?
arXiv Detail & Related papers (2024-09-23T13:16:09Z) - Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
We propose a principled way to define a diffusion model by constructing a unified multi-modal diffusion model in a common diffusion space.
We propose several multimodal generation settings to verify our framework, including image transition, masked-image training, joint image-label and joint image-representation generative modeling.
arXiv Detail & Related papers (2024-07-24T18:04:17Z) - LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models [4.675123839851372]
textitLatentExplainer is a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models.
Our approach perturbs latent variables, interpreting changes in generated data, and uses multi-modal large language models (MLLMs) to produce human-understandable explanations.
arXiv Detail & Related papers (2024-06-21T04:39:03Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - A survey of multimodal deep generative models [20.717591403306287]
Multimodal learning is a framework for building models that make predictions based on different types of modalities.
Deep generative models in which distributions are parameterized by deep neural networks have attracted much attention.
arXiv Detail & Related papers (2022-07-05T15:48:51Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.