LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
- URL: http://arxiv.org/abs/2406.14862v4
- Date: Fri, 18 Oct 2024 04:39:35 GMT
- Title: LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models
- Authors: Mengdan Zhu, Raasikh Kanjiani, Jiahui Lu, Andrew Choi, Qirui Ye, Liang Zhao,
- Abstract summary: textitLatentExplainer is a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models.
Our approach perturbs latent variables, interpreting changes in generated data, and uses multi-modal large language models (MLLMs) to produce human-understandable explanations.
- Score: 4.675123839851372
- License:
- Abstract: Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces \textit{LatentExplainer}, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. \textit{LatentExplainer} tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. Our approach perturbs latent variables, interpreting changes in generated data, and uses multi-modal large language models (MLLMs) to produce human-understandable explanations. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations for latent variables. The results highlight the effectiveness of incorporating inductive biases and uncertainty quantification, significantly enhancing model interpretability.
Related papers
- Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - Explaining latent representations of generative models with large multimodal models [5.9908087713968925]
Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence.
We propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model.
arXiv Detail & Related papers (2024-02-02T19:28:33Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders [0.0]
We argue that continuous variables may not be ideal to model features of textual data, due to the fact that most generative factors in text are discrete.
We propose a Variational Autoencoder based method which models language features as discrete variables and encourages independence between variables for learning disentangled representations.
arXiv Detail & Related papers (2021-09-15T09:10:05Z) - Analysis of ODE2VAE with Examples [0.0]
Ordinary Differential Equation Variational Auto-Encoder (ODE2VAE) is a deep latent variable model.
We show that the model is able to learn meaningful latent representations to an extent without any supervision.
arXiv Detail & Related papers (2021-08-10T20:12:26Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.