Challenges in Training PINNs: A Loss Landscape Perspective
- URL: http://arxiv.org/abs/2402.01868v2
- Date: Mon, 3 Jun 2024 23:35:42 GMT
- Title: Challenges in Training PINNs: A Loss Landscape Perspective
- Authors: Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, Madeleine Udell,
- Abstract summary: This paper explores challenges in training Physics-Informed Neural Networks (PINNs)
We examine difficulties in minimizing the PINN loss function, particularly due to ill-conditioning caused by differential operators in the residual term.
We introduce a novel second-order gradient, NysNewton-CG (NNCG), which significantly improves PINN performance.
- Score: 16.89714536706181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores challenges in training Physics-Informed Neural Networks (PINNs), emphasizing the role of the loss landscape in the training process. We examine difficulties in minimizing the PINN loss function, particularly due to ill-conditioning caused by differential operators in the residual term. We compare gradient-based optimizers Adam, L-BFGS, and their combination Adam+L-BFGS, showing the superiority of Adam+L-BFGS, and introduce a novel second-order optimizer, NysNewton-CG (NNCG), which significantly improves PINN performance. Theoretically, our work elucidates the connection between ill-conditioned differential operators and ill-conditioning in the PINN loss and shows the benefits of combining first- and second-order optimization methods. Our work presents valuable insights and more powerful optimization strategies for training PINNs, which could improve the utility of PINNs for solving difficult partial differential equations.
Related papers
- Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks? [1.8175282137722093]
We compare PINNs and PIKANs on key challenging linear, stiff, multi-scale non-linear PDEs including Burgers, Allen-Cashinsky, Ginzburg-Landau equations.
Our results reveal improvements without the use of any other enhancements typically employed in PINNs and PIKANs.
arXiv Detail & Related papers (2025-01-22T21:19:42Z) - DiffGrad for Physics-Informed Neural Networks [0.0]
Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adamprop.
This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs.
arXiv Detail & Related papers (2024-09-05T04:39:35Z) - Densely Multiplied Physics Informed Neural Networks [1.8554335256160261]
physics-informed neural networks (PINNs) have shown great potential in dealing with nonlinear partial differential equations (PDEs)
This paper improves the neural network architecture to improve the performance of PINN.
We propose a densely multiply PINN (DM-PINN) architecture, which multiplies the output of a hidden layer with the outputs of all the behind hidden layers.
arXiv Detail & Related papers (2024-02-06T20:45:31Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
This work introduces Random Linear Projections (RLP) loss, a novel approach that enhances training efficiency by leveraging geometric relationships within the data.
Our empirical evaluations, conducted across benchmark datasets and synthetic examples, demonstrate that neural networks trained with RLP loss outperform those trained with traditional loss functions.
arXiv Detail & Related papers (2023-11-21T05:22:39Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Multi-Objective Loss Balancing for Physics-Informed Deep Learning [0.0]
We observe the role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively.
We propose a novel self-adaptive loss balancing of PINNs called ReLoBRaLo.
Our simulation studies show that ReLoBRaLo training is much faster and achieves higher accuracy than training PINNs with other balancing methods.
arXiv Detail & Related papers (2021-10-19T09:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.