Inverse Reinforcement Learning by Estimating Expertise of Demonstrators
- URL: http://arxiv.org/abs/2402.01886v1
- Date: Fri, 2 Feb 2024 20:21:09 GMT
- Title: Inverse Reinforcement Learning by Estimating Expertise of Demonstrators
- Authors: Mark Beliaev, Ramtin Pedarsani
- Abstract summary: IRLEED, Inverse Reinforcement Learning by Estimating Expertise of Demonstrators, is a novel framework that overcomes hurdles without prior knowledge of demonstrator expertise.
IRLEED enhances existing Inverse Reinforcement Learning (IRL) algorithms by combining a general model for demonstrator suboptimality to address reward bias and action variance.
Experiments in both online and offline IL settings, with simulated and human-generated data, demonstrate IRLEED's adaptability and effectiveness.
- Score: 18.50354748863624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Imitation Learning (IL), utilizing suboptimal and heterogeneous
demonstrations presents a substantial challenge due to the varied nature of
real-world data. However, standard IL algorithms consider these datasets as
homogeneous, thereby inheriting the deficiencies of suboptimal demonstrators.
Previous approaches to this issue typically rely on impractical assumptions
like high-quality data subsets, confidence rankings, or explicit environmental
knowledge. This paper introduces IRLEED, Inverse Reinforcement Learning by
Estimating Expertise of Demonstrators, a novel framework that overcomes these
hurdles without prior knowledge of demonstrator expertise. IRLEED enhances
existing Inverse Reinforcement Learning (IRL) algorithms by combining a general
model for demonstrator suboptimality to address reward bias and action
variance, with a Maximum Entropy IRL framework to efficiently derive the
optimal policy from diverse, suboptimal demonstrations. Experiments in both
online and offline IL settings, with simulated and human-generated data,
demonstrate IRLEED's adaptability and effectiveness, making it a versatile
solution for learning from suboptimal demonstrations.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.
We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.
Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - D-Shape: Demonstration-Shaped Reinforcement Learning via Goal
Conditioning [48.57484755946714]
D-Shape is a new method for combining imitation learning (IL) and reinforcement learning (RL)
This paper introduces D-Shape, a new method for combining IL and RL that uses ideas from reward shaping and goal-conditioned RL to resolve the above conflict.
We experimentally validate D-Shape in sparse-reward gridworld domains, showing that it both improves over RL in terms of sample efficiency and converges consistently to the optimal policy.
arXiv Detail & Related papers (2022-10-26T02:28:32Z) - Discriminator-Guided Model-Based Offline Imitation Learning [11.856949845359853]
offline imitation learning (IL) is a powerful method to solve decision-making problems from expert demonstrations without reward labels.
We propose the Discriminator-guided Model-based offline Learning (DMIL) framework, which introduces a discriminator to simultaneously distinguish the dynamics correctness and suboptimality of model rollout data.
Experimental results show that DMIL and its extension achieve superior performance and robustness compared to state-of-the-art offline IL methods under small datasets.
arXiv Detail & Related papers (2022-07-01T07:28:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Shaping Rewards for Reinforcement Learning with Imperfect Demonstrations
using Generative Models [18.195406135434503]
We propose a method that combines reinforcement and imitation learning by shaping the reward function with a state-and-action-dependent potential.
We show that this accelerates policy learning by specifying high-value areas of the state and action space that are worth exploring first.
In particular, we examine both normalizing flows and Generative Adversarial Networks to represent these potentials.
arXiv Detail & Related papers (2020-11-02T20:32:05Z) - Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations [78.94386823185724]
Imitation learning learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations.
In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive.
We propose Self-Adaptive Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations.
arXiv Detail & Related papers (2020-04-01T15:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.