論文の概要: Reducing Optimism Bias in Incomplete Cooperative Games
- arxiv url: http://arxiv.org/abs/2402.01930v2
- Date: Mon, 19 Feb 2024 23:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 19:41:25.938233
- Title: Reducing Optimism Bias in Incomplete Cooperative Games
- Title(参考訳): 不完全協調ゲームにおける楽観バイアスの低減
- Authors: Filip \'Uradn\'ik, David Sychrovsk\'y, Jakub \v{C}ern\'y and Martin
\v{C}ern\'y
- Abstract要約: 協調ゲームにおける連立価値を明らかにするためのシーケンスの最適化を目的としたフレームワークを提案する。
筆者らのコントリビューションは3つある: (i) 個々のプレイヤーの楽観的な連立価値の達成と、より効率的な最適化を促進するための分析的特性について検討し、 (ii) オフライン・オンライン両方の方法で追加連立価値を開示し、このギャップを最小限に抑える方法、 (iii) 実践シナリオにおけるアルゴリズムの性能を実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooperative game theory has diverse applications in contemporary artificial
intelligence, including domains like interpretable machine learning, resource
allocation, and collaborative decision-making. However, specifying a
cooperative game entails assigning values to exponentially many coalitions, and
obtaining even a single value can be resource-intensive in practice. Yet simply
leaving certain coalition values undisclosed introduces ambiguity regarding
individual contributions to the collective grand coalition. This ambiguity
often leads to players holding overly optimistic expectations, stemming from
either inherent biases or strategic considerations, frequently resulting in
collective claims exceeding the actual grand coalition value. In this paper, we
present a framework aimed at optimizing the sequence for revealing coalition
values, with the overarching goal of efficiently closing the gap between
players' expectations and achievable outcomes in cooperative games. Our
contributions are threefold: (i) we study the individual players' optimistic
completions of games with missing coalition values along with the arising gap,
and investigate its analytical characteristics that facilitate more efficient
optimization; (ii) we develop methods to minimize this gap over classes of
games with a known prior by disclosing values of additional coalitions in both
offline and online fashion; and (iii) we empirically demonstrate the
algorithms' performance in practical scenarios, together with an investigation
into the typical order of revealing coalition values.
- Abstract(参考訳): 協調ゲーム理論は、解釈可能な機械学習、リソース割り当て、協調的意思決定などを含む、現代の人工知能における多様な応用がある。
しかし、協調ゲームを指定することは、指数関数的に多数の連立に値の割り当てを伴い、単一の値でも得ることは、実際には資源集約的である。
しかし、特定の連立価値を開示されていないままにしておくと、連立に個人が貢献するあいまいさが生じる。
この曖昧さは、しばしばプレイヤーが過度に楽観的な期待を抱き、固有の偏見または戦略的考察から起因し、しばしば実際の大連立価値を超える集団的主張をもたらす。
本稿では,協調ゲームにおける選手の期待と達成可能な成果のギャップを効率的に解消することを目的として,連立価値を明らかにするためのシーケンスを最適化する枠組みを提案する。
私たちの貢献は3倍です
(i)コンビネート値の欠落した各プレイヤーの楽観的なコンプリートと、その発生するギャップについて検討し、より効率的な最適化を容易にする分析特性について検討する。
(二)オフライン・オンライン両方の連立の付加価値を開示することにより、既知の事前のゲームクラスにおけるこのギャップを最小化する方法を開発する。
(iii)実用シナリオにおけるアルゴリズムの性能を実証し,連立値を明らかにする典型的な順序について検討した。
関連論文リスト
- Aligning Individual and Collective Objectives in Multi-Agent Cooperation [18.082268221987956]
混合モチベーション協調は、マルチエージェント学習における最も顕著な課題の1つである。
textbftextitAltruistic textbftextitGradient textbftextitAdjustment (textbftextitAgA) という新しい最適化手法を導入する。
我々は,ベンチマーク環境によるAgAアルゴリズムの有効性を評価し,小規模エージェントとの混合モチベーションを検証した。
論文 参考訳(メタデータ) (2024-02-19T08:18:53Z) - Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination [36.33334853998621]
協調的オープンエンド・ラーニング(COLE)フレームワークを導入し,学習における協調的非互換性を解決する。
COLEは、グラフ理論の観点を用いて、2人のプレイヤーと協調ゲームにおけるオープンエンド目標を定式化し、各戦略の協調能力を評価し、特定する。
我々は,COLEが理論的および経験的分析から協調的不整合性を効果的に克服できることを示した。
論文 参考訳(メタデータ) (2023-06-05T16:51:38Z) - Cooperative Open-ended Learning Framework for Zero-shot Coordination [35.330951448600594]
本研究では,2人のプレーヤーによる協調ゲームにおいて,オープンエンドの目標を構築するための枠組みを提案する。
また,ゲーム理論やグラフ理論からの知識を活用する実用的なアルゴリズムを提案する。
本手法は,異なるレベルのパートナーとコーディネートする場合に,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2023-02-09T18:37:04Z) - Offline Learning in Markov Games with General Function Approximation [22.2472618685325]
マルコフゲームにおけるオフラインマルチエージェント強化学習(RL)について検討する。
マルコフゲームにおけるサンプル効率のよいオフライン学習のための最初のフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-06T05:22:27Z) - Provably Efficient Fictitious Play Policy Optimization for Zero-Sum
Markov Games with Structured Transitions [145.54544979467872]
本研究では,ゼロサムマルコフゲームに対して,構造的だが未知の遷移を伴う架空のプレイポリシー最適化アルゴリズムを提案し,解析する。
我々は、2年制の競争ゲームシナリオで、$K$のエピソードに続き、$widetildemathcalO(sqrtK)$ regret boundsを証明した。
提案アルゴリズムは,アッパー信頼境界(UCB)型最適化と,同時政策最適化の範囲内での架空のプレイの組み合わせを特徴とする。
論文 参考訳(メタデータ) (2022-07-25T18:29:16Z) - A unified stochastic approximation framework for learning in games [82.74514886461257]
ゲームにおける学習の長期的挙動(連続的・有限的)を解析するためのフレキシブルな近似フレームワークを開発する。
提案する分析テンプレートには,勾配に基づく手法,有限ゲームでの学習のための指数的/乗算的重み付け,楽観的および帯域的変異など,幅広い一般的な学習アルゴリズムが組み込まれている。
論文 参考訳(メタデータ) (2022-06-08T14:30:38Z) - Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased
Scene Graph Generation [62.96628432641806]
Scene Graph Generationは、まず与えられた画像内の視覚的コンテンツをエンコードし、次にそれらをコンパクトな要約グラフに解析することを目的としている。
まず,モーダル内改良とモーダル間相互作用を容易にする新しいスタック型ハイブリッド・アテンションネットワークを提案する。
次に、デコーダを最適化するための革新的なグループ協調学習戦略を考案する。
論文 参考訳(メタデータ) (2022-03-18T09:14:13Z) - Optimal Correlated Equilibria in General-Sum Extensive-Form Games:
Fixed-Parameter Algorithms, Hardness, and Two-Sided Column-Generation [99.00383370823839]
様々な種類の最適相関平衡を求める問題について検討する。
本稿では,特定の解の概念に依存する相関戦略の空間の表現である相関DAGを紹介する。
また、カードゲームブリッジのエンドゲームフェーズをエミュレートするトリックテイクゲームと、ライドシェアリングゲームという2つの新しいベンチマークゲームも導入した。
論文 参考訳(メタデータ) (2022-03-14T15:21:18Z) - Provably Efficient Algorithms for Multi-Objective Competitive RL [54.22598924633369]
エージェントの報酬がベクトルとして表現される多目的強化学習(RL)について検討する。
エージェントが相手と競合する設定では、その平均戻りベクトルから目標セットまでの距離によってその性能を測定する。
統計的および計算学的に効率的なアルゴリズムを開発し、関連するターゲットセットにアプローチする。
論文 参考訳(メタデータ) (2021-02-05T14:26:00Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - Finding Core Members of Cooperative Games using Agent-Based Modeling [0.0]
エージェント・ベース・モデリング(ABM)は、社会現象の洞察を得るための強力なパラダイムである。
本稿では,エージェントが連立関係を見つけられるように,AIMに組み込むアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-30T17:38:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。