Online Transfer Learning for RSV Case Detection
- URL: http://arxiv.org/abs/2402.01987v2
- Date: Sun, 7 Apr 2024 22:10:09 GMT
- Title: Online Transfer Learning for RSV Case Detection
- Authors: Yiming Sun, Yuhe Gao, Runxue Bao, Gregory F. Cooper, Jessi Espino, Harry Hochheiser, Marian G. Michaels, John M. Aronis, Chenxi Song, Ye Ye,
- Abstract summary: We introduce Multi-Source Adaptive Weighting (MSAW), an online multi-source transfer learning method.
MSAW integrates a dynamic weighting mechanism into an ensemble framework, enabling automatic adjustment of weights.
We demonstrate the effectiveness of MSAW by applying it to detect Respiratory Syncytial Virus cases within Emergency Department visits.
- Score: 6.3076606245690385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning has become a pivotal technique in machine learning and has proven to be effective in various real-world applications. However, utilizing this technique for classification tasks with sequential data often faces challenges, primarily attributed to the scarcity of class labels. To address this challenge, we introduce Multi-Source Adaptive Weighting (MSAW), an online multi-source transfer learning method. MSAW integrates a dynamic weighting mechanism into an ensemble framework, enabling automatic adjustment of weights based on the relevance and contribution of each source (representing historical knowledge) and target model (learning from newly acquired data). We demonstrate the effectiveness of MSAW by applying it to detect Respiratory Syncytial Virus cases within Emergency Department visits, utilizing multiple years of electronic health records from the University of Pittsburgh Medical Center. Our method demonstrates performance improvements over many baselines, including refining pre-trained models with online learning as well as three static weighting approaches, showing MSAW's capacity to integrate historical knowledge with progressively accumulated new data. This study indicates the potential of online transfer learning in healthcare, particularly for developing machine learning models that dynamically adapt to evolving situations where new data is incrementally accumulated.
Related papers
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - DynaMMo: Dynamic Model Merging for Efficient Class Incremental Learning for Medical Images [0.8213829427624407]
Continual learning, the ability to acquire knowledge from new data while retaining previously learned information, is a fundamental challenge in machine learning.
We propose Dynamic Model Merging, DynaMMo, a method that merges multiple networks at different stages of model training to achieve better computational efficiency.
We evaluate DynaMMo on three publicly available datasets, demonstrating its effectiveness compared to existing approaches.
arXiv Detail & Related papers (2024-04-22T11:37:35Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.