論文の概要: Online Uniform Risk Times Sampling: First Approximation Algorithms,
Learning Augmentation with Full Confidence Interval Integration
- arxiv url: http://arxiv.org/abs/2402.01995v1
- Date: Sat, 3 Feb 2024 02:36:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 23:03:18.316491
- Title: Online Uniform Risk Times Sampling: First Approximation Algorithms,
Learning Augmentation with Full Confidence Interval Integration
- Title(参考訳): オンライン一様リスクタイムサンプリング:最初の近似アルゴリズム、完全信頼区間統合による学習増強
- Authors: Xueqing Liu, Kyra Gan, Esmaeil Keyvanshokooh, Susan Murphy
- Abstract要約: デジタルヘルスにおいて、限られた治療予算を利用可能なリスク時間に割り当てる戦略は、ユーザの疲労を軽減するために不可欠である。
本稿では,近似アルゴリズムフレームワーク内でのオンライン一様リスク時間サンプリング問題について,初めて紹介する。
本稿では,この問題に対する2つのオンライン近似アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.861395476387163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In digital health, the strategy of allocating a limited treatment budget
across available risk times is crucial to reduce user fatigue. This strategy,
however, encounters a significant obstacle due to the unknown actual number of
risk times, a factor not adequately addressed by existing methods lacking
theoretical guarantees. This paper introduces, for the first time, the online
uniform risk times sampling problem within the approximation algorithm
framework. We propose two online approximation algorithms for this problem, one
with and one without learning augmentation, and provide rigorous theoretical
performance guarantees for them using competitive ratio analysis. We assess the
performance of our algorithms using both synthetic experiments and a real-world
case study on HeartSteps mobile applications.
- Abstract(参考訳): デジタルヘルスにおいて、限られた治療予算を利用可能なリスク時間に割り当てる戦略は、ユーザの疲労を軽減するために不可欠である。
しかし、この戦略は、理論上の保証が欠けている既存の方法では適切に対処できない要因である、実際のリスクタイムが不明であるために、重大な障害に直面する。
本稿では,近似アルゴリズムフレームワーク内でのオンライン一様リスク時間サンプリング問題について,初めて紹介する。
そこで本研究では,学習の強化を伴わない2つのオンライン近似アルゴリズムを提案し,競合比分析による厳密な理論性能保証を提供する。
人工実験とHeartStepsモバイルアプリケーションにおける実世界のケーススタディの両方を用いてアルゴリズムの性能を評価する。
関連論文リスト
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED)は、マルチアームバンディット問題に対する非常に効果的なアプローチである。
UCBベースのアルゴリズムとトンプソンサンプリングを実証的に上回ることが観察されている。
我々は、LinIMEDアルゴリズムのファミリーと呼ぶIMEDアルゴリズムの新しい線形バージョンを提案する。
論文 参考訳(メタデータ) (2024-05-24T04:11:58Z) - On Universally Optimal Algorithms for A/B Testing [49.429419538826444]
ベルヌーイ報奨を伴う多腕バンディットにおける固定予算によるベストアーム識別の問題について検討する。
A/Bテスト問題としても知られる2つのアームの問題に対して,各アームを等しくサンプリングするアルゴリズムが存在しないことを証明した。
論文 参考訳(メタデータ) (2023-08-23T08:38:53Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
本研究では,分散分布からサンプリングしたストリーミングデータを用いてDPの凸最適化問題について検討し,逐次到着する。
また、プライベート情報に関連するパラメータを更新し、新しいデータ(しばしばオンラインアルゴリズム)に基づいてリリースする連続リリースモデルについても検討する。
提案アルゴリズムは,1pleq 2$のときの最適余剰リスクと,2pleqinfty$のときの非プライベートな場合の最先端の余剰リスクを線形時間で達成する。
論文 参考訳(メタデータ) (2022-06-16T12:09:47Z) - An optimal scheduled learning rate for a randomized Kaczmarz algorithm [1.2183405753834562]
そこで本研究では,Ax 近似 b + varepsilon$ を解くため,学習速度が無作為化 Kaczmarz アルゴリズムの性能にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2022-02-24T17:38:24Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
本稿では,ギャップベースアルゴリズムと逐次除去に基づく2つのアルゴリズムを提案する。
具体的には、ギャップベースのアルゴリズムでは、サンプルの複雑さは定数要素まで最適であり、連続的な除去では対数因子まで最適である。
論文 参考訳(メタデータ) (2021-11-14T21:49:58Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Combining K-means type algorithms with Hill Climbing for Joint
Stratification and Sample Allocation Designs [0.0]
これは、基本層のすべての可能な成層集合から最適成層を探索するサンプル問題である。
それぞれのソリューションのコストを評価するのに 費用がかかります
上記のアルゴリズムと最近の3つのアルゴリズムの多段階組み合わせを比較し、ソリューションコスト、評価時間、トレーニング時間を報告する。
論文 参考訳(メタデータ) (2021-08-18T08:41:58Z) - A PAC algorithm in relative precision for bandit problem with costly
sampling [0.0]
本稿ではまず,この離散最適化問題に対して,相対的精度でほぼ正解(PAC)を得るための単純帯域幅アルゴリズムを提案する。
また、同一の保証付きPACソリューションを提供する適応的帯域幅アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:22:25Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。