論文の概要: A Survey of Constraint Formulations in Safe Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2402.02025v2
- Date: Wed, 8 May 2024 00:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 16:34:07.234827
- Title: A Survey of Constraint Formulations in Safe Reinforcement Learning
- Title(参考訳): 安全強化学習における制約の定式化に関する調査
- Authors: Akifumi Wachi, Xun Shen, Yanan Sui,
- Abstract要約: 現実世界の問題に強化学習を適用する場合、安全性は重要です。
一般的な安全なRLアプローチは、期待される累積報酬を最大化する制約付き基準に基づいている。
近年のRLの安全性向上努力にもかかわらず、この分野の体系的な理解は依然として困難である。
- 参考スコア(独自算出の注目度): 15.593999581562203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety is critical when applying reinforcement learning (RL) to real-world problems. As a result, safe RL has emerged as a fundamental and powerful paradigm for optimizing an agent's policy while incorporating notions of safety. A prevalent safe RL approach is based on a constrained criterion, which seeks to maximize the expected cumulative reward subject to specific safety constraints. Despite recent effort to enhance safety in RL, a systematic understanding of the field remains difficult. This challenge stems from the diversity of constraint representations and little exploration of their interrelations. To bridge this knowledge gap, we present a comprehensive review of representative constraint formulations, along with a curated selection of algorithms designed specifically for each formulation. In addition, we elucidate the theoretical underpinnings that reveal the mathematical mutual relations among common problem formulations. We conclude with a discussion of the current state and future directions of safe reinforcement learning research.
- Abstract(参考訳): 現実世界の問題に強化学習(RL)を適用する場合、安全性が重要となる。
その結果、安全RLは、安全の概念を取り入れつつエージェントのポリシーを最適化するための基本的で強力なパラダイムとして登場した。
一般的な安全なRLアプローチは、特定の安全制約の対象となる累積報酬を最大化する制約付き基準に基づいている。
近年のRLの安全性向上努力にもかかわらず、この分野の体系的な理解は依然として困難である。
この課題は、制約表現の多様性と、それらの相互関係の探索に起因している。
この知識ギャップを埋めるために、各定式化に特化して設計されたアルゴリズムのキュレートされた選択とともに、代表的制約定式化の包括的なレビューを示す。
さらに,共通問題定式化の数学的相互関係を明らかにする理論的基盤を解明する。
我々は,安全強化学習研究の現状と今後の方向性について論じる。
関連論文リスト
- Feasibility Consistent Representation Learning for Safe Reinforcement Learning [25.258227763316228]
FCSRL(Fasibility Consistent Safe Reinforcement Learning)という新しいフレームワークを導入する。
本フレームワークは、表現学習と実現可能性指向の目的を組み合わせることで、安全RLのために生の状態から安全関連情報を識別し、抽出する。
本手法は,従来の表現学習ベースラインよりも安全性に配慮した埋め込みを学習し,優れた性能を実現する。
論文 参考訳(メタデータ) (2024-05-20T01:37:21Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
強化学習(Reinforcement Learning, RL)は、過去数十年にわたって、幅広い領域で意思決定に革命をもたらした。
しかし、現実のシナリオにRLポリシーをデプロイすることは、安全性を確保する上で重要な課題である。
従来の安全RLアプローチは、事前に定義された安全制約を政策学習プロセスに組み込むことに重点を置いてきた。
本稿では,安全なRL制御ポリシを同時に学習し,その環境の未知の安全制約パラメータを同定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T20:01:15Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
本稿では,複数の制約仕様を事前に特定しない制約付き強化学習(RL)のクラスについて検討する。
報酬訓練目標と制約満足度との間に不明確なトレードオフがあるため、適切な制約仕様を特定することは困難である。
我々は、ポリシーと制約仕様を一緒に検索する新しい制約付きRLアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:28:23Z) - Gradient Shaping for Multi-Constraint Safe Reinforcement Learning [31.297400160104853]
オンライン安全強化学習(RL)は、環境との対話を通じて制約を満たしながらタスク効率を最大化する政策を訓練する。
本稿では,MCセーフなRLアルゴリズムのための統一フレームワークを提案する。
一般ラグランジアンベースの安全なRLアルゴリズムのためのグラディエント・シェーピング(GradS)法を導入し、報酬と制約満足度の両方の観点からトレーニング効率を向上させる。
論文 参考訳(メタデータ) (2023-12-23T00:55:09Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - Joint Learning of Policy with Unknown Temporal Constraints for Safe
Reinforcement Learning [0.0]
安全制約と最適なRLポリシーを同時に学習するフレームワークを提案する。
この枠組みは、我々の共同学習プロセスの収束を確立する定理によって支えられている。
当社のフレームワークをグリッド環境で紹介し、許容される安全性制約とRLポリシーの両方をうまく識別した。
論文 参考訳(メタデータ) (2023-04-30T21:15:07Z) - State-wise Safe Reinforcement Learning: A Survey [5.826308050755618]
ステートワイド制約は、現実世界のアプリケーションにおいて最も一般的な制約の1つです。
本稿では,RLにおける状態制約に対処する既存のアプローチについて概説する。
論文 参考訳(メタデータ) (2023-02-06T21:11:29Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
本稿では,段階的公正性制約を伴う強化学習について紹介する。
我々は、ポリシーの最適性と公正性違反に関して、強力な理論的保証を持つ学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-08T04:06:23Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
我々は,標準的な強化学習技術を用いて学習した名目政策に対して,国家安全の制約を認定するための制御理論的アプローチを開発する。
我々は、正式な安全保証を提供し、我々のアプローチの有効性を実証的に実証する。
論文 参考訳(メタデータ) (2022-07-04T11:43:23Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
適応型安全なパッドディングは、学習プロセス中の安全性を確保しつつ、RL(Reinforcement Learning)に最適な制御ポリシーの合成を強制する。
理論的な保証は、合成されたポリシーの最適性と学習アルゴリズムの収束について利用できる。
論文 参考訳(メタデータ) (2020-02-26T00:01:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。