Generalized transmon Hamiltonian for Andreev spin qubits
- URL: http://arxiv.org/abs/2402.02118v1
- Date: Sat, 3 Feb 2024 10:58:08 GMT
- Title: Generalized transmon Hamiltonian for Andreev spin qubits
- Authors: Luka Pave\v{s}i\'c and Rok \v{Z}itko
- Abstract summary: We solve the problem of an interacting quantum dot embedded in a Josephson junction between two superconductors with finite charging energy.
The approach is based on the flat-band approximation of the Richardson model, which reduces the Hilbert space to the point where exact diagonalisation is possible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We solve the problem of an interacting quantum dot embedded in a Josephson
junction between two superconductors with finite charging energy described by
the transmon (Cooper pair box) Hamiltonian. The approach is based on the
flat-band approximation of the Richardson model, which reduces the Hilbert
space to the point where exact diagonalisation is possible while retaining all
states that are necessary to describe the low energy phenomena. The presented
method accounts for the physics of the quantum dot, the Josephson effect and
the Coulomb repulsion (charging energy) at the same level. In particular, it
captures the quantum fluctuations of the superconducting phase as well as the
coupling between the superconducting phase and the quantum dot (spin) degrees
of freedom. The method can be directly applied for modelling Andreev spin
qubits embedded in transmon circuits in all parameter regimes, for describing
time-dependent processes, and for the calculation of transition matrix elements
for microwave-driven transmon, spin-flip and mixed transitions that involve
coupling to charge or current degree of freedom.
Related papers
- A quantum fluctuation description of charge qubits [0.0]
We consider a specific instance of a superconducting circuit, the so-called charge-qubit, consisting of a capacitor and a Josephson junction.
We derive the Hamiltonian governing the quantum behavior of the circuit in the limit of a large number $N$ of quasi-spins.
arXiv Detail & Related papers (2023-04-26T07:43:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Singlet-doublet transitions of a quantum dot Josephson junction detected
in a transmon circuit [2.610856432667959]
Microwave spectroscopy of the transmon's transition spectrum allows us to probe the ground state parity of the quantum dot.
Our results can facilitate the realization of semiconductor-based $0-pi$ qubits and Andreev qubits.
arXiv Detail & Related papers (2022-02-25T15:20:55Z) - Accelerated adiabatic passage in cavity magnomechanics [0.0]
Cavity magnomechanics provides a readily-controllable hybrid system, that consisted of cavity mode, magnon mode, and phonon mode, for quantum state manipulation.
We propose two accelerated adiabatic-passage protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving.
arXiv Detail & Related papers (2022-01-29T09:24:34Z) - Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet [0.0]
This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
arXiv Detail & Related papers (2021-07-08T13:35:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Magnifying quantum phase fluctuations with Cooper-pair pairing [0.0]
We fabricate a generalized Josephson element that can be tuned in situ between one- and two-Cooper-pair tunneling.
We measure a tenfold suppression of flux sensitivity of the first transition energy, implying a twofold increase in the vacuum phase fluctuations.
arXiv Detail & Related papers (2020-10-29T11:15:22Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.