Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet
- URL: http://arxiv.org/abs/2107.03841v3
- Date: Wed, 20 Apr 2022 10:52:54 GMT
- Title: Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet
- Authors: Mona H. Kalthoff, Dante M. Kennes, Andrew J. Millis, Michael A. Sentef
- Abstract summary: This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A deeper theoretical understanding of driven-dissipative interacting systems
and their nonequilibrium phase transitions is essential both to advance our
fundamental physics understanding and to harness technological opportunities
arising from optically controlled quantum many-body states. This paper provides
a numerical study of dynamical phases and the transitions between them in the
nonequilibrium steady state of the prototypical two-dimensional Heisenberg
antiferromagnet with drive and dissipation. We demonstrate a nonthermal
transition that is characterized by a qualitative change in the magnon
distribution, from subthermal at low drive to a generalized Bose-Einstein form
including a nonvanishing condensate fraction at high drive. A finite-size
analysis reveals static and dynamical critical scaling at the transition, with
a discontinuous slope of the magnon number versus driving field strength and
critical slowing down at the transition point. Implications for experiments on
quantum materials and polariton condensates are discussed.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Adiabatic State Preparation in a Quantum Ising Spin Chain [32.352947507436355]
We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice.
We observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior.
arXiv Detail & Related papers (2024-04-11T05:27:40Z) - Dynamics of a Nonequilibrium Discontinuous Quantum Phase Transition in a
Spinor Bose-Einstein Condensate [0.0]
We show that critical scaling behavior in a first-order quantum phase transition can be understood from generic properties.
We predict the onset of the decay of the metastable state on short times scales and the number of resulting phase-separated ferromagnetic domains at longer times.
arXiv Detail & Related papers (2023-12-27T12:39:23Z) - Environment induced dynamical quantum phase transitions in two-qubit Rabi model [0.0]
We observe dynamical quantum phase transitions in the dissipative two-qubit Rabi model.
The transitions also manifest in two-qubit entanglement.
These findings shed light on the complex behavior of dynamical quantum phase transitions in non-integrable models.
arXiv Detail & Related papers (2023-12-09T22:30:23Z) - Observation of a finite-energy phase transition in a one-dimensional
quantum simulator [39.899531336700136]
We show the first experimental demonstration of a finite-energy phase transition in 1D.
By preparing initial states with different energies in a 1D trapped-ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system.
arXiv Detail & Related papers (2023-10-30T18:00:01Z) - Quantum criticality of bandwidth-controlled Mott transition [0.0]
Metallic states near the Mott insulator show a variety of quantum phases including various magnetic, charge ordered states and high-temperature superconductivity.
The quantum criticality is, however, not well understood when the transition is controlled by the bandwidth through physical parameters such as pressure.
arXiv Detail & Related papers (2023-02-28T14:48:33Z) - Dynamical quantum phase transitions in a spinor Bose-Einstein condensate
and criticality enhanced quantum sensing [2.3046646540823916]
Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems.
We unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions.
This work advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems.
arXiv Detail & Related papers (2022-09-23T05:27:17Z) - Nonequilibrium phase transition in a single-electron micromaser [0.0]
Phase transitions occur in a wide range of physical systems and are characterized by the abrupt change of a physical observable.
Here, we investigate a nonequilibrium phase transition in a single-electron micromaser consisting of a microwave cavity.
We find that the phase transition can be predicted from short-time measurements of the higher-order factorial cumulants.
arXiv Detail & Related papers (2022-01-16T20:12:46Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.