論文の概要: Evolution Guided Generative Flow Networks
- arxiv url: http://arxiv.org/abs/2402.02186v1
- Date: Sat, 3 Feb 2024 15:28:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 21:24:19.956723
- Title: Evolution Guided Generative Flow Networks
- Title(参考訳): 進化を導く生成フローネットワーク
- Authors: Zarif Ikram, Ling Pan, Dianbo Liu
- Abstract要約: Generative Flow Networks(GFlowNets)は、報酬に比例した合成オブジェクトのサンプリングを学ぶ。
GFlowNetsの大きな課題のひとつは、長期間の地平線とまばらな報酬を扱う際に、それらを効果的にトレーニングすることだ。
進化的アルゴリズム(EA)を用いたGFlowNetsトレーニングの簡易かつ強力な拡張であるEGFN(Evolution Guided Generative Flow Network)を提案する。
- 参考スコア(独自算出の注目度): 11.609895436955242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Flow Networks (GFlowNets) are a family of probabilistic generative
models that learn to sample compositional objects proportional to their
rewards. One big challenge of GFlowNets is training them effectively when
dealing with long time horizons and sparse rewards. To address this, we propose
Evolution guided generative flow networks (EGFN), a simple but powerful
augmentation to the GFlowNets training using Evolutionary algorithms (EA). Our
method can work on top of any GFlowNets training objective, by training a set
of agent parameters using EA, storing the resulting trajectories in the
prioritized replay buffer, and training the GFlowNets agent using the stored
trajectories. We present a thorough investigation over a wide range of toy and
real-world benchmark tasks showing the effectiveness of our method in handling
long trajectories and sparse rewards.
- Abstract(参考訳): 生成フローネットワーク(gflownets)は、その報酬に比例する構成オブジェクトのサンプルを学ぶ確率的生成モデルの一群である。
gflownetsの大きな課題のひとつは、長い時間軸とわずかな報酬を扱う場合に効果的にトレーニングすることだ。
そこで本研究では,進化的アルゴリズム(EA)を用いたGFlowNetsトレーニングの簡易かつ強力な拡張であるEvolution Guided Generative Flow Network (EGFN)を提案する。
本手法は,任意のGFlowNetsトレーニング目標上で動作し,EAを用いてエージェントパラメータのセットをトレーニングし,得られたトラジェクトリを優先度付けされたリプレイバッファに格納し,格納されたトラジェクトリを用いてGFlowNetsエージェントをトレーニングする。
本研究は,長い軌道とスパース報酬を扱う上での手法の有効性を示す,幅広い玩具および実世界のベンチマークタスクについて,徹底的な調査を行う。
関連論文リスト
- Improving GFlowNets with Monte Carlo Tree Search [6.497027864860203]
近年の研究では,GFlowNetsとエントロピー規則化強化学習の強い関係が明らかにされている。
我々はモンテカルロ木探索(MCTS)を適用してGFlowNetの計画能力を高めることを提案する。
実験により,本手法により,GFlowNetトレーニングのサンプル効率と,事前学習したGFlowNetモデルの生成精度が向上することが示された。
論文 参考訳(メタデータ) (2024-06-19T15:58:35Z) - Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets [27.33222647437964]
Generative Flow Networks (GFlowNets) は、報酬に確率のあるオブジェクトを逐次生成するポリシーを学ぶためのアモータイズされたサンプリング手法である。
GFlowNetsは、標準的な強化学習手法とは対照的に、多種多様な高次比例オブジェクトを生成する優れた能力を示す。
近年、目標条件付きGFlowNetを学習し、タスクが指定した目標を達成できる単一のGFlowNetをトレーニングすることを目的として、様々な有用なプロパティを取得するための研究が進められている。
本稿では,これらの課題に対処するため,RBS(Retrospective Backward Synthesis)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T09:44:10Z) - Generative Flow Networks as Entropy-Regularized RL [4.857649518812728]
生成フローネットワーク(ジェネレーティブフローネットワーク、英:generative flow network、GFlowNets)は、一連の行動を通じて与えられた報酬に比例確率を持つ合成対象をサンプリングするためのポリシーを訓練する手法である。
生成フローネットワークの学習作業は,エントロピー規則化強化学習問題として効率的に行うことができることを示す。
先に報告した結果とは対照的に,エントロピー的RLアプローチは,既存のGFlowNetトレーニング手法と競合する可能性がある。
論文 参考訳(メタデータ) (2023-10-19T17:31:40Z) - Pre-Training and Fine-Tuning Generative Flow Networks [61.90529626590415]
本稿では,GFlowNetの報酬なし事前学習のための新しいアプローチを提案する。
自己指導型問題としてトレーニングをフレーミングすることで,候補空間の探索を学習する結果条件付きGFlowNetを提案する。
事前学習したOC-GFNモデルにより、下流タスクにおける新しい報酬関数をサンプリングできるポリシーを直接抽出できることを示す。
論文 参考訳(メタデータ) (2023-10-05T09:53:22Z) - Expected flow networks in stochastic environments and two-player zero-sum games [63.98522423072093]
生成フローネットワーク(GFlowNets)は、所定の分布に合わせてトレーニングされた逐次サンプリングモデルである。
我々はGFlowNetsを環境に拡張する予測フローネットワーク(EFlowNets)を提案する。
本稿では,タンパク質設計などのタスクにおいて,EFlowNetが他のGFlowNetよりも優れていることを示す。
次に、EFlowNetsの概念を敵環境に拡張し、2プレイヤーゼロサムゲームのための敵フローネットワーク(AFlowNets)を提案する。
論文 参考訳(メタデータ) (2023-10-04T12:50:29Z) - Towards Understanding and Improving GFlowNet Training [71.85707593318297]
本稿では,学習したサンプリング分布と目標報酬分布を比較するための効率的な評価手法を提案する。
本稿では,高解像度のx$,相対的エッジフローポリシーのパラメータ化,新しい軌道バランス目標を提案する。
論文 参考訳(メタデータ) (2023-05-11T22:50:41Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - Generative Augmented Flow Networks [88.50647244459009]
GFlowNetsに中間報酬を組み込むためにGAFlowNets(Generative Augmented Flow Networks)を提案する。
GAFlowNetsは、エッジベースとステートベース固有の報酬を共同で活用して、探索を改善することができる。
論文 参考訳(メタデータ) (2022-10-07T03:33:56Z) - Learning GFlowNets from partial episodes for improved convergence and
stability [56.99229746004125]
生成フローネットワーク(GFlowNets)は、非正規化対象密度の下で離散オブジェクトのシーケンシャルサンプリングを訓練するアルゴリズムである。
GFlowNetsの既存のトレーニング目的は、状態または遷移に局所的であるか、あるいはサンプリング軌道全体にわたって報酬信号を伝達する。
強化学習におけるTD($lambda$)アルゴリズムにインスパイアされたサブトラジェクティブバランス(subtrajectory balance, SubTB($lambda$)を導入する。
論文 参考訳(メタデータ) (2022-09-26T15:44:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。