論文の概要: Image Fusion via Vision-Language Model
- arxiv url: http://arxiv.org/abs/2402.02235v2
- Date: Wed, 10 Jul 2024 18:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:17:39.774748
- Title: Image Fusion via Vision-Language Model
- Title(参考訳): ビジョンランゲージモデルによる画像融合
- Authors: Zixiang Zhao, Lilun Deng, Haowen Bai, Yukun Cui, Zhipeng Zhang, Yulun Zhang, Haotong Qin, Dongdong Chen, Jiangshe Zhang, Peng Wang, Luc Van Gool,
- Abstract要約: VIsion-Language Model (FILM)による画像融合という新しい融合パラダイムを導入する。
FILMは画像からセマンティックプロンプトを生成し、それらをChatGPTに入力し、包括的なテキスト記述を行う。
これらの記述はテキスト領域内で融合され、視覚情報融合を導く。
FILMは、赤外線可視、医療、マルチ露光、マルチフォーカス画像融合の4つの画像融合タスクにおいて有望な結果を示している。
- 参考スコア(独自算出の注目度): 91.36809431547128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image fusion integrates essential information from multiple images into a single composite, enhancing structures, textures, and refining imperfections. Existing methods predominantly focus on pixel-level and semantic visual features for recognition, but often overlook the deeper text-level semantic information beyond vision. Therefore, we introduce a novel fusion paradigm named image Fusion via vIsion-Language Model (FILM), for the first time, utilizing explicit textual information from source images to guide the fusion process. Specifically, FILM generates semantic prompts from images and inputs them into ChatGPT for comprehensive textual descriptions. These descriptions are fused within the textual domain and guide the visual information fusion, enhancing feature extraction and contextual understanding, directed by textual semantic information via cross-attention. FILM has shown promising results in four image fusion tasks: infrared-visible, medical, multi-exposure, and multi-focus image fusion. We also propose a vision-language dataset containing ChatGPT-generated paragraph descriptions for the eight image fusion datasets across four fusion tasks, facilitating future research in vision-language model-based image fusion. Code and dataset are available at https://github.com/Zhaozixiang1228/IF-FILM.
- Abstract(参考訳): 画像融合は、複数の画像から必要不可欠な情報を1つの複合体に統合し、構造、テクスチャ、そして不完全性を補う。
既存の手法は主に認識のためのピクセルレベルとセマンティックな視覚的特徴に焦点を当てるが、しばしば視覚を超えたより深いテキストレベルのセマンティック情報を見落としている。
そこで我々は,VIsion-Language Model (FILM) による画像融合という新しい融合パラダイムを初めて導入し,画像からの明示的なテキスト情報を利用して融合プロセスの導出を行う。
具体的には、FILMは画像からセマンティックプロンプトを生成し、それらをChatGPTに入力し、包括的なテキスト記述を行う。
これらの記述はテキスト領域内で融合し、視覚情報融合を誘導し、クロスアテンションを介してテキスト意味情報によって指示される特徴抽出と文脈理解を強化する。
FILMは、赤外線可視、医療、マルチ露光、マルチフォーカス画像融合の4つの画像融合タスクにおいて有望な結果を示している。
また、4つの融合タスクにまたがる8つの画像融合データセットについて、ChatGPT生成項を記述した視覚言語データセットを提案する。
コードとデータセットはhttps://github.com/Zhaozixiang1228/IF-FILMで公開されている。
関連論文リスト
- Text-DiFuse: An Interactive Multi-Modal Image Fusion Framework based on Text-modulated Diffusion Model [30.739879255847946]
既存のマルチモーダル画像融合法では、ソース画像に示される複合劣化に対処できない。
本研究では,テキスト変調拡散モデルであるText-DiFuseに基づく,インタラクティブなマルチモーダル画像融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T13:10:50Z) - Fusion from Decomposition: A Self-Supervised Approach for Image Fusion and Beyond [74.96466744512992]
画像融合の本質は、ソース画像からの相補的な情報を統合することである。
DeFusion++は、画像融合の品質を高め、下流の高レベル視覚タスクの有効性を高める、汎用的な融合表現を生成する。
論文 参考訳(メタデータ) (2024-10-16T06:28:49Z) - Text-IF: Leveraging Semantic Text Guidance for Degradation-Aware and Interactive Image Fusion [26.809259323430368]
そこで本研究では,テキストIF(Text-IF)と呼ばれる画像融合タスクにおいて,意味的テキスト誘導画像融合モデルを活用する新しい手法を提案する。
テキストIFは、オールインワンの赤外線および可視画像劣化認識処理およびインタラクティブなフレキシブル融合結果にアクセスできる。
このように、Text-IFはマルチモーダル画像融合だけでなく、マルチモーダル情報融合も実現している。
論文 参考訳(メタデータ) (2024-03-25T03:06:45Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
我々は、テキスト記述から高レベルなセマンティクスを活用し、赤外線と可視画像のセマンティクスを統合するテキスト誘導多モード画像融合法を提案する。
本手法は,視覚的に優れた融合結果を生成するだけでなく,既存の手法よりも高い検出mAPを達成し,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-31T08:13:47Z) - TextFusion: Unveiling the Power of Textual Semantics for Controllable
Image Fusion [38.61215361212626]
本稿では,高度な画像融合のためのテキスト誘導融合パラダイムを提案する。
テキスト注釈付き画像融合データセットIVTをリリースする。
我々のアプローチは、従来の外見に基づく融合法よりも一貫して優れています。
論文 参考訳(メタデータ) (2023-12-21T09:25:10Z) - Scene Graph Based Fusion Network For Image-Text Retrieval [2.962083552798791]
画像テキスト検索における重要な課題は、画像とテキストの正確な対応を学習する方法である。
そこで我々は,Scene GraphベースのFusion Network(SGFN)を提案する。
我々のSGFNは、非常に少数のSOTA画像テキスト検索方法よりも優れている。
論文 参考訳(メタデータ) (2023-03-20T13:22:56Z) - Fine-grained Cross-modal Fusion based Refinement for Text-to-Image
Synthesis [12.954663420736782]
本稿では,FF-GAN と呼ばれるファイングラファスなテキストイメージベースのジェネレーティブ・アドバーサリアル・ネットワークを提案する。
FF-GANは、微細なテキストイメージ融合ブロック(FF-Block)とGSR(Global Semantic Refinement)の2つのモジュールで構成されている。
論文 参考訳(メタデータ) (2023-02-17T05:44:05Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - Boosting Entity-aware Image Captioning with Multi-modal Knowledge Graph [96.95815946327079]
名前付きエンティティの長期分布により、名前付きエンティティと視覚的キューの関係を学習することは困難である。
本稿では、視覚オブジェクトと名前付きエンティティを関連付けるために、マルチモーダルな知識グラフを構築する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-26T05:50:41Z) - Real-MFF: A Large Realistic Multi-focus Image Dataset with Ground Truth [58.226535803985804]
我々はReal-MFFと呼ばれる大規模で現実的なマルチフォーカスデータセットを導入する。
データセットは、710対のソースイメージと対応する接地真理画像を含む。
このデータセット上で10の典型的なマルチフォーカスアルゴリズムを図示のために評価する。
論文 参考訳(メタデータ) (2020-03-28T12:33:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。