Multi-Level Aggregation and Recursive Alignment Architecture for Efficient Parallel Inference Segmentation Network
- URL: http://arxiv.org/abs/2402.02286v3
- Date: Thu, 18 Apr 2024 13:33:32 GMT
- Title: Multi-Level Aggregation and Recursive Alignment Architecture for Efficient Parallel Inference Segmentation Network
- Authors: Yanhua Zhang, Ke Zhang, Jingyu Wang, Yulin Wu, Wuwei Wang,
- Abstract summary: We propose a parallel inference network customized for semantic segmentation tasks.
We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy.
Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets.
- Score: 18.47001817385548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time semantic segmentation is a crucial research for real-world applications. However, many methods lay particular emphasis on reducing the computational complexity and model size, while largely sacrificing the accuracy. To tackle this problem, we propose a parallel inference network customized for semantic segmentation tasks to achieve a good trade-off between speed and accuracy. We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy. Specifically, we first design a dual-pyramidal path architecture (Multi-level Feature Aggregation Module, MFAM) to aggregate multi-level features from the encoder to each scale, providing hierarchical clues for subsequent spatial alignment and corresponding in-network inference. Then, we build Recursive Alignment Module (RAM) by combining the flow-based alignment module with recursive upsampling architecture for accurate spatial alignment between multi-scale feature maps with half the computational complexity of the straightforward alignment method. Finally, we perform independent parallel inference on the aligned features to obtain multi-scale scores, and adaptively fuse them through an attention-based Adaptive Scores Fusion Module (ASFM) so that the final prediction can favor objects of multiple scales. Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets. We also conducted systematic ablation studies to gain insight into our motivation and architectural design. Code is available at: https://github.com/Yanhua-Zhang/MFARANet.
Related papers
- A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We also develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
Our proposed ReSFU framework consistently achieves satisfactory performance on different segmentation applications.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Bilateral Network with Residual U-blocks and Dual-Guided Attention for
Real-time Semantic Segmentation [18.393208069320362]
We design a new fusion mechanism for two-branch architecture which is guided by attention computation.
To be precise, we use the Dual-Guided Attention (DGA) module we proposed to replace some multi-scale transformations.
Experiments on Cityscapes and CamVid dataset show the effectiveness of our method.
arXiv Detail & Related papers (2023-10-31T09:20:59Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - Staged Depthwise Correlation and Feature Fusion for Siamese Object
Tracking [0.6827423171182154]
We propose a novel staged depthwise correlation and feature fusion network, named DCFFNet, to further optimize the feature extraction for visual tracking.
We build our deep tracker upon a siamese network architecture, which is offline trained from scratch on multiple large-scale datasets.
For comprehensive evaluations of performance, we implement our tracker on the popular benchmarks, including OTB100, VOT2018 and LaSOT.
arXiv Detail & Related papers (2023-10-15T06:04:42Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
We propose Adaptive Spot-Guided Transformer (ASTR) for local feature matching.
ASTR models the local consistency and scale variations in a unified coarse-to-fine architecture.
arXiv Detail & Related papers (2023-03-29T12:28:01Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
We present a novel learning-based alignment network for complex alignment scenes.
We validate our approach on the 3DMatch dataset and the KITTI odometry dataset.
arXiv Detail & Related papers (2021-11-15T08:27:21Z) - Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network [13.628218953897946]
In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem.
By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results.
arXiv Detail & Related papers (2020-08-06T17:04:34Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
This paper proposes an augmented parallel-pyramid net with attention partial module and differentiable auto-data augmentation.
We define a new pose search space where the sequences of data augmentations are formulated as a trainable and operational CNN component.
Notably, our method achieves the top-1 accuracy on the challenging COCO keypoint benchmark and the state-of-the-art results on the MPII datasets.
arXiv Detail & Related papers (2020-03-17T03:52:17Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.