Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network
- URL: http://arxiv.org/abs/2008.02763v1
- Date: Thu, 6 Aug 2020 17:04:34 GMT
- Title: Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network
- Authors: Cong Wang, Yutong Wu, Zhixun Su, Junyang Chen
- Abstract summary: In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem.
By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results.
- Score: 13.628218953897946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of multimedia, single image deraining is a basic pre-processing
work, which can greatly improve the visual effect of subsequent high-level
tasks in rainy conditions. In this paper, we propose an effective algorithm,
called JDNet, to solve the single image deraining problem and conduct the
segmentation and detection task for applications. Specifically, considering the
important information on multi-scale features, we propose a Scale-Aggregation
module to learn the features with different scales. Simultaneously,
Self-Attention module is introduced to match or outperform their convolutional
counterparts, which allows the feature aggregation to adapt to each channel.
Furthermore, to improve the basic convolutional feature transformation process
of Convolutional Neural Networks (CNNs), Self-Calibrated convolution is applied
to build long-range spatial and inter-channel dependencies around each spatial
location that explicitly expand fields-of-view of each convolutional layer
through internal communications and hence enriches the output features. By
designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated
convolution skillfully, the proposed model has better deraining results both on
real-world and synthetic datasets. Extensive experiments are conducted to
demonstrate the superiority of our method compared with state-of-the-art
methods. The source code will be available at
\url{https://supercong94.wixsite.com/supercong94}.
Related papers
- Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - SENetV2: Aggregated dense layer for channelwise and global
representations [0.0]
We introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze residual module.
This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge.
We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures.
arXiv Detail & Related papers (2023-11-17T14:10:57Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - GOCor: Bringing Globally Optimized Correspondence Volumes into Your
Neural Network [176.3781969089004]
Feature correlation layer serves as a key neural network module in computer vision problems that involve dense correspondences between image pairs.
We propose GOCor, a fully differentiable dense matching module, acting as a direct replacement to the feature correlation layer.
Our approach significantly outperforms the feature correlation layer for the tasks of geometric matching, optical flow, and dense semantic matching.
arXiv Detail & Related papers (2020-09-16T17:33:01Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Crowd Counting via Hierarchical Scale Recalibration Network [61.09833400167511]
We propose a novel Hierarchical Scale Recalibration Network (HSRNet) to tackle the task of crowd counting.
HSRNet models rich contextual dependencies and recalibrating multiple scale-associated information.
Our approach can ignore various noises selectively and focus on appropriate crowd scales automatically.
arXiv Detail & Related papers (2020-03-07T10:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.