論文の概要: Diffusion Models are Certifiably Robust Classifiers
- arxiv url: http://arxiv.org/abs/2402.02316v3
- Date: Wed, 23 Oct 2024 05:26:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:30.354470
- Title: Diffusion Models are Certifiably Robust Classifiers
- Title(参考訳): 拡散モデルは好ましくはロバスト分類器である
- Authors: Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang Su, Jun Zhu,
- Abstract要約: 拡散分類器が$O(1)$ Lipschitznessを持ち、それらの証明された堅牢性を確立し、それらの固有のレジリエンスを実証する。
その結果、CIFAR-10の80%以上と70%以上は、それぞれ0.25未満の標準と0.5未満の逆方向の摂動下での強靭性が確認された。
- 参考スコア(独自算出の注目度): 40.31532959207627
- License:
- Abstract: Generative learning, recognized for its effective modeling of data distributions, offers inherent advantages in handling out-of-distribution instances, especially for enhancing robustness to adversarial attacks. Among these, diffusion classifiers, utilizing powerful diffusion models, have demonstrated superior empirical robustness. However, a comprehensive theoretical understanding of their robustness is still lacking, raising concerns about their vulnerability to stronger future attacks. In this study, we prove that diffusion classifiers possess $O(1)$ Lipschitzness, and establish their certified robustness, demonstrating their inherent resilience. To achieve non-constant Lipschitzness, thereby obtaining much tighter certified robustness, we generalize diffusion classifiers to classify Gaussian-corrupted data. This involves deriving the evidence lower bounds (ELBOs) for these distributions, approximating the likelihood using the ELBO, and calculating classification probabilities via Bayes' theorem. Experimental results show the superior certified robustness of these Noised Diffusion Classifiers (NDCs). Notably, we achieve over 80% and 70% certified robustness on CIFAR-10 under adversarial perturbations with \(\ell_2\) norms less than 0.25 and 0.5, respectively, using a single off-the-shelf diffusion model without any additional data.
- Abstract(参考訳): データ分散の効果的なモデリングで認識されている生成学習は、アウト・オブ・ディストリビューションのインスタンスを扱う際、特に敵の攻撃に対する堅牢性を高めるために本質的に有利である。
これらのうち、強力な拡散モデルを利用した拡散分類器は、優れた経験的堅牢性を示している。
しかしながら、彼らの堅牢性に関する包括的な理論的理解は依然として欠如しており、その脆弱性が将来のより強力な攻撃に繋がるのではないかという懸念が持ち上がっている。
本研究では拡散分類器が$O(1)$ Lipschitznessを持っていることを証明し、それらの証明されたロバスト性を確立し、それら固有のレジリエンスを実証する。
非定常リプシッツ性を達成するために、より厳密な証明されたロバスト性を得るため、拡散分類器を一般化してガウス崩壊したデータを分類する。
これは、これらの分布に対するエビデンスローバウンド(ELBO)の導出、ELBOを用いた可能性の近似、ベイズの定理による分類確率の算出を含む。
実験結果から,これらのノイズ拡散分類器(NDC)の信頼性が向上した。
特に,CIFAR-10では,それぞれ0.25未満と0.5未満の逆摂動条件下で80%以上,70%以上の確証が得られた。
関連論文リスト
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Struggle with Adversarial Defense? Try Diffusion [8.274506117450628]
アドリア攻撃は微妙な摂動を導入して誤分類を引き起こす。
拡散に基づく敵の訓練は、しばしば収束の課題と高い計算費用に遭遇する。
本稿では,これらの問題を克服するために,真性最大化拡散(TMDC)を提案する。
論文 参考訳(メタデータ) (2024-04-12T06:52:40Z) - Fair Sampling in Diffusion Models through Switching Mechanism [5.560136885815622]
本研究では,拡散モデルに対するテクスタトリビュートスイッチング機構という,公平性を考慮したサンプリング手法を提案する。
提案手法の有効性を2つの重要な側面から数学的に証明し,実験的に実証する。
論文 参考訳(メタデータ) (2024-01-06T06:55:26Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Robust Classification via a Single Diffusion Model [37.46217654590878]
ロバスト拡散(英: Robust Diffusion、RDC)は、事前学習された拡散モデルから構築され、逆向きに堅牢な生成型分類器である。
RDCは75.67%で様々な$ell_infty$標準有界適応攻撃に対して、CIFAR-10で$epsilon_infty/255$で堅牢な精度を達成した。
論文 参考訳(メタデータ) (2023-05-24T15:25:19Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
拡散モデルの特性を解析し,それらが証明された堅牢性を高める条件を確立する。
事前訓練されたモデル(すなわち分類器)の信頼性向上を目的とした新しいDensePure法を提案する。
このロバストな領域は多重凸集合の和であり、以前の研究で特定されたロバストな領域よりもはるかに大きい可能性が示されている。
論文 参考訳(メタデータ) (2022-11-01T08:18:07Z) - Guided Diffusion Model for Adversarial Purification from Random Noise [0.0]
本稿では,敵攻撃に対する強力な防御策として,新しい拡散浄化法を提案する。
我々のモデルは、CIFAR-10データセット上でPGD-L_inf攻撃(eps = 8/255)の下で、89.62%の堅牢な精度を達成する。
論文 参考訳(メタデータ) (2022-06-22T06:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。