INViT: A Generalizable Routing Problem Solver with Invariant Nested View Transformer
- URL: http://arxiv.org/abs/2402.02317v3
- Date: Sun, 26 May 2024 08:27:25 GMT
- Title: INViT: A Generalizable Routing Problem Solver with Invariant Nested View Transformer
- Authors: Han Fang, Zhihao Song, Paul Weng, Yutong Ban,
- Abstract summary: deep reinforcement learning has shown promising results for learning fast routings to solve routing problems.
Most of the solvers suffer from generalizing to an unseen distribution or distributions with different scales.
We propose a novel architecture, called Invariant Nested View Transformer (INViT), which enforces a nested design together with invariant views inside the encoders to promote the generalizability of the learned solver.
- Score: 17.10555702634864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep reinforcement learning has shown promising results for learning fast heuristics to solve routing problems. Meanwhile, most of the solvers suffer from generalizing to an unseen distribution or distributions with different scales. To address this issue, we propose a novel architecture, called Invariant Nested View Transformer (INViT), which is designed to enforce a nested design together with invariant views inside the encoders to promote the generalizability of the learned solver. It applies a modified policy gradient algorithm enhanced with data augmentations. We demonstrate that the proposed INViT achieves a dominant generalization performance on both TSP and CVRP problems with various distributions and different problem scales.
Related papers
- Multiset Transformer: Advancing Representation Learning in Persistence Diagrams [11.512742322405906]
Multiset Transformer is a neural network that utilizes attention mechanisms specifically designed for multisets as inputs.
The architecture integrates multiset-enhanced attentions with a pool-decomposition scheme, allowing multiplicities to be preserved across equivariant layers.
Experimental results demonstrate that the Multiset Transformer outperforms existing neural network methods in the realm of persistence diagram representation learning.
arXiv Detail & Related papers (2024-11-22T01:38:47Z) - Adaptivity and Modularity for Efficient Generalization Over Task
Complexity [42.748898521364914]
We investigate how the use of a mechanism for adaptive and modular computation in transformers facilitates the learning of tasks that demand generalization over the number of sequential steps.
We propose a transformer-based architecture called Hyper-UT, which combines dynamic function generation from hyper networks with adaptive depth from Universal Transformers.
arXiv Detail & Related papers (2023-10-13T05:29:09Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
Non-autoregressive Transformers (NATs) reduce the inference latency of Autoregressive Transformers (ATs) by predicting words all at once rather than in sequential order.
In this paper, we propose to ease the difficulty of modality learning via sampling from the model distribution instead of the data distribution.
arXiv Detail & Related papers (2023-05-23T04:20:13Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Out-of-Distribution Generalization in Algorithmic Reasoning Through
Curriculum Learning [4.191829617421395]
Out-of-distribution generalization is a longstanding challenge for neural networks.
We show that OODG can occur on complex problems if the training set includes examples sampled from the whole distribution of simpler component tasks.
arXiv Detail & Related papers (2022-10-07T01:21:05Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
arXiv Detail & Related papers (2020-06-15T21:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.