Total Deep Variation: A Stable Regularizer for Inverse Problems
- URL: http://arxiv.org/abs/2006.08789v1
- Date: Mon, 15 Jun 2020 21:54:15 GMT
- Title: Total Deep Variation: A Stable Regularizer for Inverse Problems
- Authors: Erich Kobler, Alexander Effland, Karl Kunisch, Thomas Pock
- Abstract summary: We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
- Score: 71.90933869570914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various problems in computer vision and medical imaging can be cast as
inverse problems. A frequent method for solving inverse problems is the
variational approach, which amounts to minimizing an energy composed of a data
fidelity term and a regularizer. Classically, handcrafted regularizers are
used, which are commonly outperformed by state-of-the-art deep learning
approaches. In this work, we combine the variational formulation of inverse
problems with deep learning by introducing the data-driven general-purpose
total deep variation regularizer. In its core, a convolutional neural network
extracts local features on multiple scales and in successive blocks. This
combination allows for a rigorous mathematical analysis including an optimal
control formulation of the training problem in a mean-field setting and a
stability analysis with respect to the initial values and the parameters of the
regularizer. In addition, we experimentally verify the robustness against
adversarial attacks and numerically derive upper bounds for the generalization
error. Finally, we achieve state-of-the-art results for numerous imaging tasks.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Regularization for Adversarial Robust Learning [18.46110328123008]
We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
arXiv Detail & Related papers (2024-08-19T03:15:41Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
arXiv Detail & Related papers (2024-01-29T22:52:57Z) - GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples
using Gradients and Invariance Transformations [77.34726150561087]
We propose a holistic approach for the detection of generalization errors in deep neural networks.
GIT combines the usage of gradient information and invariance transformations.
Our experiments demonstrate the superior performance of GIT compared to the state-of-the-art on a variety of network architectures.
arXiv Detail & Related papers (2023-07-05T22:04:38Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Model-Aware Regularization For Learning Approaches To Inverse Problems [11.314492463814817]
We provide an analysis of the generalisation error of deep learning methods applicable to inverse problems.
We propose a 'plug-and-play' regulariser that leverages the knowledge of the forward map to improve the generalization of the network.
We demonstrate the efficacy of our model-aware regularised deep learning algorithms against other state-of-the-art approaches.
arXiv Detail & Related papers (2020-06-18T21:59:03Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
In this paper, we design an end-to-end framework allowing to learn actual variational frameworks for inverse problems in a supervised setting.
The variational cost and the gradient-based solver are both stated as neural networks using automatic differentiation for the latter.
This leads to a data-driven discovery of variational models.
arXiv Detail & Related papers (2020-06-05T19:53:34Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.