Embedding Non-Distortive Cancelable Face Template Generation
- URL: http://arxiv.org/abs/2402.02540v1
- Date: Sun, 4 Feb 2024 15:39:18 GMT
- Title: Embedding Non-Distortive Cancelable Face Template Generation
- Authors: Dmytro Zakharov, Oleksandr Kuznetsov, Emanuele Frontoni, Natalia
Kryvinska
- Abstract summary: We introduce an innovative image distortion technique that makes facial images unrecognizable to the eye but still identifiable by any custom embedding neural network model.
We test the reliability of biometric recognition networks by determining the maximum image distortion that does not change the predicted identity.
- Score: 22.80706131626207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometric authentication systems are crucial for security, but developing
them involves various complexities, including privacy, security, and achieving
high accuracy without directly storing pure biometric data in storage. We
introduce an innovative image distortion technique that makes facial images
unrecognizable to the eye but still identifiable by any custom embedding neural
network model. Using the proposed approach, we test the reliability of
biometric recognition networks by determining the maximum image distortion that
does not change the predicted identity. Through experiments on MNIST and LFW
datasets, we assess its effectiveness and compare it based on the traditional
comparison metrics.
Related papers
- Synthetic Forehead-creases Biometric Generation for Reliable User Verification [6.639785884921617]
We present a new framework to synthesize forehead-crease image data while maintaining important features, such as uniqueness and realism.
We evaluate the diversity and realism of the generated forehead-crease images using the Fr'echet Inception Distance (FID) and the Structural Similarity Index Measure (SSIM)
arXiv Detail & Related papers (2024-08-28T10:33:00Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
We introduce an innovative image transformation technique that renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models.
The proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close.
We show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy.
arXiv Detail & Related papers (2024-01-26T18:20:53Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
Face recognition systems are widely deployed in high-security applications.
Digital manipulations, such as face morphing, pose a security threat to face recognition systems.
We present a novel method for adapting deep learning-based face recognition systems to be more robust against face morphing attacks.
arXiv Detail & Related papers (2024-01-21T21:04:05Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
We introduce Disguise, a novel algorithm that seamlessly de-identifies facial images while ensuring the usability of the modified data.
Our method involves extracting and substituting depicted identities with synthetic ones, generated using variational mechanisms to maximize obfuscation and non-invertibility.
We extensively evaluate our method using multiple datasets, demonstrating a higher de-identification rate and superior consistency compared to prior approaches in various downstream tasks.
arXiv Detail & Related papers (2023-03-23T13:50:46Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - Unsupervised Face Recognition using Unlabeled Synthetic Data [16.494722503803196]
We propose an unsupervised face recognition model based on unlabeled synthetic data (U SynthFace)
Our proposed U SynthFace learns to maximize the similarity between two augmented images of the same synthetic instance.
We prove the effectiveness of our U SynthFace in achieving relatively high recognition accuracies using unlabeled synthetic data.
arXiv Detail & Related papers (2022-11-14T14:05:19Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
We show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value.
We evaluate our procedure on three image-to-image regression tasks.
arXiv Detail & Related papers (2022-02-10T18:59:56Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
We propose a measure of recognizability of a face image, implemented by a deep neural network trained using mostly recognizable identities.
We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5.
arXiv Detail & Related papers (2021-06-08T05:25:03Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.