Unsupervised Face Recognition using Unlabeled Synthetic Data
- URL: http://arxiv.org/abs/2211.07371v1
- Date: Mon, 14 Nov 2022 14:05:19 GMT
- Title: Unsupervised Face Recognition using Unlabeled Synthetic Data
- Authors: Fadi Boutros, Marcel Klemt, Meiling Fang, Arjan Kuijper and Naser
Damer
- Abstract summary: We propose an unsupervised face recognition model based on unlabeled synthetic data (U SynthFace)
Our proposed U SynthFace learns to maximize the similarity between two augmented images of the same synthetic instance.
We prove the effectiveness of our U SynthFace in achieving relatively high recognition accuracies using unlabeled synthetic data.
- Score: 16.494722503803196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the past years, the main research innovations in face recognition
focused on training deep neural networks on large-scale identity-labeled
datasets using variations of multi-class classification losses. However, many
of these datasets are retreated by their creators due to increased privacy and
ethical concerns. Very recently, privacy-friendly synthetic data has been
proposed as an alternative to privacy-sensitive authentic data to comply with
privacy regulations and to ensure the continuity of face recognition research.
In this paper, we propose an unsupervised face recognition model based on
unlabeled synthetic data (USynthFace). Our proposed USynthFace learns to
maximize the similarity between two augmented images of the same synthetic
instance. We enable this by a large set of geometric and color transformations
in addition to GAN-based augmentation that contributes to the USynthFace model
training. We also conduct numerous empirical studies on different components of
our USynthFace. With the proposed set of augmentation operations, we proved the
effectiveness of our USynthFace in achieving relatively high recognition
accuracies using unlabeled synthetic data.
Related papers
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn)
FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations.
arXiv Detail & Related papers (2024-04-16T08:15:10Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
Large face datasets are primarily sourced from web-based images, lacking explicit user consent.
In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models.
arXiv Detail & Related papers (2024-04-04T15:45:25Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
State-of-the-art face recognition networks are often computationally expensive and cannot be used for mobile applications.
We propose a new framework to train lightweight face recognition models by distilling the knowledge of a pretrained teacher face recognition model using synthetic data.
We use synthetic face images without identity labels, mitigating the problems in the intra-class variation generation of synthetic datasets.
arXiv Detail & Related papers (2023-08-28T19:15:27Z) - Identity-driven Three-Player Generative Adversarial Network for
Synthetic-based Face Recognition [14.73254194339562]
We present a three-player generative adversarial network (GAN) framework, namely IDnet, that enables the integration of identity information into the generation process.
We empirically proved that our IDnet synthetic images are of higher identity discrimination in comparison to the conventional two-player GAN.
We demonstrated the applicability of our IDnet data in training face recognition models by evaluating these models on a wide set of face recognition benchmarks.
arXiv Detail & Related papers (2023-04-30T00:04:27Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
We introduce Disguise, a novel algorithm that seamlessly de-identifies facial images while ensuring the usability of the modified data.
Our method involves extracting and substituting depicted identities with synthetic ones, generated using variational mechanisms to maximize obfuscation and non-invertibility.
We extensively evaluate our method using multiple datasets, demonstrating a higher de-identification rate and superior consistency compared to prior approaches in various downstream tasks.
arXiv Detail & Related papers (2023-03-23T13:50:46Z) - SFace: Privacy-friendly and Accurate Face Recognition using Synthetic
Data [9.249824128880707]
We propose and investigate the feasibility of using a privacy-friendly synthetically generated face dataset to train face recognition models.
To address the privacy aspect of using such data to train a face recognition model, we provide extensive evaluation experiments on the identity relation between the synthetic dataset and the original authentic dataset used to train the generative model.
We also propose to train face recognition on our privacy-friendly dataset, SFace, using three different learning strategies, multi-class classification, label-free knowledge transfer, and combined learning of multi-class classification and knowledge transfer.
arXiv Detail & Related papers (2022-06-21T16:42:04Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data [59.85605718477639]
We present an approach to use unlabeled faces to learn generalizable face representations.
Experimental results on unconstrained datasets show that a small amount of unlabeled data with sufficient diversity can lead to an appreciable gain in recognition performance.
arXiv Detail & Related papers (2020-03-17T20:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.