VlogQA: Task, Dataset, and Baseline Models for Vietnamese Spoken-Based Machine Reading Comprehension
- URL: http://arxiv.org/abs/2402.02655v2
- Date: Sat, 6 Apr 2024 04:29:58 GMT
- Title: VlogQA: Task, Dataset, and Baseline Models for Vietnamese Spoken-Based Machine Reading Comprehension
- Authors: Thinh Phuoc Ngo, Khoa Tran Anh Dang, Son T. Luu, Kiet Van Nguyen, Ngan Luu-Thuy Nguyen,
- Abstract summary: This paper presents the development process of a Vietnamese spoken language corpus for machine reading comprehension tasks.
The existing MRC corpora in Vietnamese mainly focus on formal written documents such as Wikipedia articles, online newspapers, or textbooks.
In contrast, the VlogQA consists of 10,076 question-answer pairs based on 1,230 transcript documents sourced from YouTube.
- Score: 1.3942150186842373
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents the development process of a Vietnamese spoken language corpus for machine reading comprehension (MRC) tasks and provides insights into the challenges and opportunities associated with using real-world data for machine reading comprehension tasks. The existing MRC corpora in Vietnamese mainly focus on formal written documents such as Wikipedia articles, online newspapers, or textbooks. In contrast, the VlogQA consists of 10,076 question-answer pairs based on 1,230 transcript documents sourced from YouTube -- an extensive source of user-uploaded content, covering the topics of food and travel. By capturing the spoken language of native Vietnamese speakers in natural settings, an obscure corner overlooked in Vietnamese research, the corpus provides a valuable resource for future research in reading comprehension tasks for the Vietnamese language. Regarding performance evaluation, our deep-learning models achieved the highest F1 score of 75.34% on the test set, indicating significant progress in machine reading comprehension for Vietnamese spoken language data. In terms of EM, the highest score we accomplished is 53.97%, which reflects the challenge in processing spoken-based content and highlights the need for further improvement.
Related papers
- ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text
Processing [1.1765925931670576]
We present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT.
Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks.
arXiv Detail & Related papers (2023-10-17T11:34:50Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - KIT's Multilingual Speech Translation System for IWSLT 2023 [58.5152569458259]
We describe our speech translation system for the multilingual track of IWSLT 2023.
The task requires translation into 10 languages of varying amounts of resources.
Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation.
arXiv Detail & Related papers (2023-06-08T16:13:20Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Sentence Extraction-Based Machine Reading Comprehension for Vietnamese [0.2446672595462589]
We introduce the UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in Vietnamese language.
The dataset consists of comprises 23.074 question-answers based on 5.109 passages of 174 Vietnamese articles from Wikipedia.
Our experiments show that the best machine model is XLM-R$_Large, which achieves an exact match (EM) score of 85.97% and an F1-score of 88.77% on our dataset.
arXiv Detail & Related papers (2021-05-19T10:22:27Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
Current state-of-the-art models even surpass human performance on several benchmarks.
Previous works have revealed the abilities of pre-trained multilingual models for zero-shot cross-lingual reading comprehension.
This paper further utilized unlabeled data to improve the performance.
arXiv Detail & Related papers (2021-05-08T08:04:30Z) - Conversational Machine Reading Comprehension for Vietnamese Healthcare
Texts [0.2446672595462589]
We present a new Vietnamese corpus for conversational machine reading comprehension (UIT-ViCoQA)
UIT-ViCoQA consists of 10,000 questions with answers over 2,000 conversations about health news articles.
The best model obtains an F1 score of 45.27%, which is 30.91 points behind human performance (76.18%), indicating that there is ample room for improvement.
arXiv Detail & Related papers (2021-05-04T14:50:39Z) - A Vietnamese Dataset for Evaluating Machine Reading Comprehension [2.7528170226206443]
We present UIT-ViQuAD, a new dataset for the low-resource language as Vietnamese to evaluate machine reading comprehension models.
This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia.
We conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD.
arXiv Detail & Related papers (2020-09-30T15:06:56Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
We present the first application of the BERTSum model to conversational language.
We generate abstractive summaries of narrated instructional videos across a wide variety of topics.
We envision this integrated as a feature in intelligent virtual assistants, enabling them to summarize both written and spoken instructional content upon request.
arXiv Detail & Related papers (2020-08-21T20:59:34Z) - A Sentence Cloze Dataset for Chinese Machine Reading Comprehension [64.07894249743767]
We propose a new task called Sentence Cloze-style Machine Reading (SC-MRC)
The proposed task aims to fill the right candidate sentence into the passage that has several blanks.
We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task.
arXiv Detail & Related papers (2020-04-07T04:09:00Z) - Enhancing lexical-based approach with external knowledge for Vietnamese
multiple-choice machine reading comprehension [2.5199066832791535]
We construct a dataset which consists of 2,783 pairs of multiple-choice questions and answers based on 417 Vietnamese texts.
We propose a lexical-based MRC method that utilizes semantic similarity measures and external knowledge sources to analyze questions and extract answers from the given text.
Our proposed method achieves 61.81% by accuracy, which is 5.51% higher than the best baseline model.
arXiv Detail & Related papers (2020-01-16T08:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.