論文の概要: Standard Gaussian Process Can Be Excellent for High-Dimensional Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2402.02746v3
- Date: Wed, 15 May 2024 06:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 17:41:32.207454
- Title: Standard Gaussian Process Can Be Excellent for High-Dimensional Bayesian Optimization
- Title(参考訳): 標準ガウス過程は高次元ベイズ最適化に優れている
- Authors: Zhitong Xu, Shandian Zhe,
- Abstract要約: 我々は,高次元最適化のための様々な合成および実世界のベンチマーク問題に対して,標準GP回帰を用いたBOを体系的に検討した。
驚いたことに、Mate'ernカーネルとUpper Confidence Bound (UCB)を使用する場合、標準BOは一貫してトップレベルのパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 16.35174351805908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a long-standing and widespread belief that Bayesian Optimization (BO) with standard Gaussian process (GP), referred to as standard BO, is ineffective in high-dimensional optimization problems. While this belief sounds reasonable, strong empirical evidence is lacking. In this paper, we systematically investigated BO with standard GP regression across a variety of synthetic and real-world benchmark problems for high-dimensional optimization. We found that, surprisingly, when using Mat\'ern kernels and Upper Confidence Bound (UCB), standard BO consistently achieves top-tier performance, often outperforming other BO methods specifically designed for high-dimensional optimization. Contrary to the stereotype, we found that standard GP equipped with Mat\'ern kernels can serve as a capable surrogate for learning high-dimensional functions. Without strong structural assumptions, BO with standard GP not only excels in high-dimensional optimization but also is robust in accommodating various structures within target functions. Furthermore, with standard GP, achieving promising optimization performance is possible via maximum a posterior (MAP) estimation with diffuse priors or merely maximum likelihood estimation, eliminating the need for expensive Markov-Chain Monte Carlo (MCMC) sampling that might be required by more complex surrogate models. In parallel, we also investigated and analyzed alternative popular settings in running standard BO, which, however, often fail in high-dimensional optimization. This might link to the a few failure cases reported in literature. We thus advocate for a re-evaluation and in-depth study of the potential of standard BO in addressing high-dimensional problems.
- Abstract(参考訳): 標準ガウス過程 (GP) を持つベイズ最適化 (BO) は高次元最適化問題では有効ではないという長年にわたる広く信じられてきた。
この信念は合理的に聞こえるが、強い経験的証拠は欠落している。
本稿では,高次元最適化のための多種多様な合成および実世界のベンチマーク問題に対して,標準的なGP回帰を用いたBOを体系的に検討した。
意外なことに、Match\ernカーネルとUpper Confidence Bound (UCB)を使用する場合、標準BOは一貫してトップレベルのパフォーマンスを実現し、高次元最適化のために設計された他のBOメソッドよりも優れていることがわかりました。
ステレオタイプとは対照的に、Mat\'ernカーネルを搭載した標準GPは高次元関数の学習に有効なサロゲートとして機能することを発見した。
強い構造的仮定がなければ、標準 GP を持つ BO は高次元最適化に優れるだけでなく、ターゲット関数内の様々な構造を調節するのにも堅牢である。
さらに、標準GPでは、より複雑なサロゲートモデルで必要とされる高価なマルコフ-チェインモンテカルロサンプリング(MCMC)の必要性を排除し、拡散前の最大 (MAP) 推定または単に最大 (maximum maximum) 推定によって、有望な最適化性能を達成することができる。
並行して、標準BOの実行における代替の一般的な設定についても検討し、分析を行ったが、高次元最適化ではしばしば失敗する。
これは、文献で報告されたいくつかの障害ケースと関係があるかもしれない。
そこで我々は,高次元問題に対処する上での標準BOの可能性の再評価と詳細な研究を提唱する。
関連論文リスト
- Pseudo-Bayesian Optimization [7.556071491014536]
ブラックボックス最適化の収束を保証するために最小限の要件を課す公理的枠組みについて検討する。
我々は、単純な局所回帰と、不確実性を定量化するために適切な「ランダム化事前」構造を用いることが、収束を保証するだけでなく、常に最先端のベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-15T07:55:28Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
目的関数の大域的最適値にサブ線形収束できる新しいBO法を提案する。
本手法では,BOプロセスにランダムなデータポイントを追加するために,マルチアームバンディット法 (EXP3) を用いる。
提案手法は, 様々な合成および実世界の問題に対して, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T03:35:45Z) - A Study of Bayesian Neural Network Surrogates for Bayesian Optimization [46.97686790714025]
ベイズニューラルネットワーク(BNN)は近年,実用的な機能近似器になりつつある。
我々は,BNNを最適化のための標準GPサロゲートの代替として検討する。
論文 参考訳(メタデータ) (2023-05-31T17:00:00Z) - Model-based Causal Bayesian Optimization [78.120734120667]
モデルに基づく因果ベイズ最適化(MCBO)を提案する。
MCBOは介入と逆のペアをモデリングするのではなく、完全なシステムモデルを学ぶ。
標準的なベイズ最適化とは異なり、我々の取得関数は閉形式では評価できない。
論文 参考訳(メタデータ) (2022-11-18T14:28:21Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Accounting for Gaussian Process Imprecision in Bayesian Optimization [0.0]
ガウス過程の先行仕様が古典的BO収束に及ぼす影響について検討する。
本稿では,従来のパラメータの誤特定に対して,メソッドをより堅牢にレンダリングすることを目的としたBOの一般化としてPROBOを紹介した。
物質科学の現実的な問題に対して,従来のBOに対する我々のアプローチを検証し,より高速に収束するためにPROBOを観察する。
論文 参考訳(メタデータ) (2021-11-16T08:45:39Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - High-Dimensional Bayesian Optimisation with Variational Autoencoders and
Deep Metric Learning [119.91679702854499]
本研究では,高次元の入力空間上でベイズ最適化を行うためのディープ・メトリック・ラーニングに基づく手法を提案する。
このような帰納バイアスを、利用可能なラベル付きデータの1%だけを用いて達成する。
実証的な貢献として、実世界の高次元ブラックボックス最適化問題に対する最先端の結果を示す。
論文 参考訳(メタデータ) (2021-06-07T13:35:47Z) - Revisiting Bayesian Optimization in the light of the COCO benchmark [1.4467794332678539]
本稿では,共通かつあまり一般的ではない設計選択のbo(gaussian process based)の性能への影響について,大規模な調査を行う。
この研究のために開発されたコードは、RパッケージDiceOptimの新バージョン(v2.1.1)をCRANで利用可能にしている。
論文 参考訳(メタデータ) (2021-03-30T19:45:18Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。