論文の概要: Contrastive Diffuser: Planning Towards High Return States via Contrastive Learning
- arxiv url: http://arxiv.org/abs/2402.02772v3
- Date: Sat, 15 Jun 2024 16:29:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 06:35:20.374133
- Title: Contrastive Diffuser: Planning Towards High Return States via Contrastive Learning
- Title(参考訳): コントラストディフューザ:コントラスト学習による高戻り状態に向けた計画
- Authors: Yixiang Shan, Zhengbang Zhu, Ting Long, Qifan Liang, Yi Chang, Weinan Zhang, Liang Yin,
- Abstract要約: オフライン強化学習(RL)の性能は、オフラインデータセットにおけるハイリターン軌道の割合に敏感である。
本稿では,低リターントラジェクトリをフル活用し,オフラインRLアルゴリズムの性能を向上させるために,Contrastive diffuser (CDiffuser)を提案する。
- 参考スコア(独自算出の注目度): 24.654686581207343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of offline reinforcement learning (RL) is sensitive to the proportion of high-return trajectories in the offline dataset. However, in many simulation environments and real-world scenarios, there are large ratios of low-return trajectories rather than high-return trajectories, which makes learning an efficient policy challenging. In this paper, we propose a method called Contrastive Diffuser (CDiffuser) to make full use of low-return trajectories and improve the performance of offline RL algorithms. Specifically, CDiffuser groups the states of trajectories in the offline dataset into high-return states and low-return states and treats them as positive and negative samples correspondingly. Then, it designs a contrastive mechanism to pull the trajectory of an agent toward high-return states and push them away from low-return states. Through the contrast mechanism, trajectories with low returns can serve as negative examples for policy learning, guiding the agent to avoid areas associated with low returns and achieve better performance. Experiments on 14 commonly used D4RL benchmarks demonstrate the effectiveness of our proposed method. Our code is publicly available at \url{https://anonymous.4open.science/r/CDiffuser}.
- Abstract(参考訳): オフライン強化学習(RL)の性能は、オフラインデータセットにおけるハイリターン軌道の割合に敏感である。
しかし,多くのシミュレーション環境や実世界のシナリオでは,高リターントラジェクトリよりも低リターントラジェクトリの比率が大きいため,学習の効率化が図られている。
本稿では,低リターントラジェクトリをフル活用し,オフラインRLアルゴリズムの性能を向上させるために,Contrastive Diffuser (CDiffuser) という手法を提案する。
具体的には、CDiffuserはオフラインデータセットのトラジェクトリの状態を高リターン状態と低リターン状態に分類し、それに対応する正と負のサンプルとして扱う。
そして、エージェントの軌道を高リターン状態に引き上げ、低リターン状態から引き離すための対照的なメカニズムを設計する。
コントラスト機構を通じて、低利得のトラジェクトリは政策学習のネガティブな例として機能し、低利得に関連する領域を避け、より良いパフォーマンスを達成するようにエージェントを誘導する。
14個のD4RLベンチマークを用いて提案手法の有効性を実証した。
我々のコードは \url{https://anonymous.4open.science/r/CDiffuser} で公開されている。
関連論文リスト
- Efficient Preference-based Reinforcement Learning via Aligned Experience Estimation [37.36913210031282]
評価に基づく強化学習(PbRL)は、報酬工学を使わずにトレーニングエージェントに優れた能力を示す。
ラベルの平滑化とポリシー正則化を併用した効率的なPbRL法であるSEERを提案する。
論文 参考訳(メタデータ) (2024-05-29T01:49:20Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
オフラインポリシー学習は、既存のトラジェクトリのデータセットを使用して、追加データを収集せずに意思決定ポリシーを学ぶことを目的としている。
我々は、データセットが最適下軌道に支配されている場合、最先端のオフラインRLアルゴリズムはデータセットにおけるトラジェクトリの戻り平均よりも大幅に改善されないことを論じる。
本稿では,標準オフラインRLアルゴリズムにおいて,サンプリング戦略の実現と,プラグイン・アンド・プレイモジュールとして使用できるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-06T17:58:14Z) - Reasoning with Latent Diffusion in Offline Reinforcement Learning [11.349356866928547]
オフラインの強化学習は、静的データセットからハイリワードポリシーを学ぶ手段として、約束を守る。
オフラインRLの主な課題は、静的データセットから最適な軌道の部分を効果的に縫合することにある。
本稿では,潜在拡散の表現性を利用して,非支持軌道列を圧縮された潜在スキルとしてモデル化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-12T20:58:21Z) - Prioritized Trajectory Replay: A Replay Memory for Data-driven
Reinforcement Learning [52.49786369812919]
本稿では,サンプリング視点をトラジェクトリに拡張するメモリ技術である(Prioritized) Trajectory Replay (TR/PTR)を提案する。
TRは、その後の状態情報の使用を最適化するトラジェクトリの後方サンプリングによって学習効率を向上させる。
D4RL上の既存のオフラインRLアルゴリズムとTRとPTRを統合する利点を実証する。
論文 参考訳(メタデータ) (2023-06-27T14:29:44Z) - Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory
Weighting [29.21380944341589]
我々は、最先端のオフラインRLアルゴリズムが低リターントラジェクトリによって過剰に抑制され、トラジェクトリを最大限活用できないことを示す。
この再加重サンプリング戦略は、任意のオフラインRLアルゴリズムと組み合わせることができる。
私たちは、CQL、IQL、TD3+BCがこの潜在的なポリシー改善の一部しか達成していないのに対して、これらの同じアルゴリズムがデータセットを完全に活用していることを実証的に示しています。
論文 参考訳(メタデータ) (2023-06-22T17:58:02Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
オフライン強化学習(RL)は、学習ポリシーとデータセットの分散シフトによって問題となる。
本稿では,データセットの再サンプリングが分散サポートを一定に保っているという観察に基づいて,オフラインRLアルゴリズムをシンプルかつ効果的に向上させる手法を提案する。
ReD(Return-based Data Re Balance)メソッドをダブします。これは10行未満のコード変更で実装でき、無視できる実行時間を追加します。
論文 参考訳(メタデータ) (2022-10-17T16:34:01Z) - Backward Imitation and Forward Reinforcement Learning via Bi-directional
Model Rollouts [11.4219428942199]
従来のモデルベース強化学習(RL)手法は、学習力学モデルを用いて前方ロールアウトトレースを生成する。
本稿では,後方模倣とフォワード強化学習(BIFRL)フレームワークを提案する。
BIFRLは、より効率的な方法で高価値状態に到達し、探索するエージェントに権限を与える。
論文 参考訳(メタデータ) (2022-08-04T04:04:05Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
本稿では、RL成分を学習するための負のサンプリング戦略を提案し、それを教師付き逐次学習と組み合わせる。
サンプル化された(負の)作用 (items) に基づいて、平均ケース上での正の作用の「アドバンテージ」を計算することができる。
SNQNとSA2Cを4つのシーケンシャルレコメンデーションモデルでインスタンス化し、2つの実世界のデータセットで実験を行う。
論文 参考訳(メタデータ) (2021-11-05T12:51:15Z) - Curriculum Offline Imitation Learning [72.1015201041391]
オフラインの強化学習タスクでは、エージェントは、環境とのさらなるインタラクションなしに、事前にコンパイルされたデータセットから学ぶ必要がある。
我々は,適応的な近隣政策を模倣する経験的選択戦略を,より高いリターンで活用するテキストカリキュラムオフライン学習(COIL)を提案する。
連続制御ベンチマークでは、COILを模倣ベースとRLベースの両方の手法と比較し、混合データセット上で平凡な振る舞いを学ぶことを避けるだけでなく、最先端のオフラインRL手法と競合することを示します。
論文 参考訳(メタデータ) (2021-11-03T08:02:48Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
環境とのオンラインインタラクションではなく、固定されたオフラインデータセットのみを使用して効果的なポリシーを学ぶバッチRLのアルゴリズムを提案する。
バッチRLにおける制限されたデータは、トレーニングデータに不十分に表現された状態/動作の値推定に固有の不確実性をもたらす。
この分散を減らすための政策制約と、過度に楽観的な見積もりを妨げる価値制約という2つの簡単な罰則によってこの問題を軽減することを提案する。
論文 参考訳(メタデータ) (2021-02-18T08:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。