論文の概要: Extreme Two-View Geometry From Object Poses with Diffusion Models
- arxiv url: http://arxiv.org/abs/2402.02800v1
- Date: Mon, 5 Feb 2024 08:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 17:23:19.754009
- Title: Extreme Two-View Geometry From Object Poses with Diffusion Models
- Title(参考訳): 拡散モデルを用いた物体の極端2次元幾何学
- Authors: Yujing Sun, Caiyi Sun, Yuan Liu, Yuexin Ma, Siu Ming Yiu
- Abstract要約: オブジェクト先行のパワーを利用して、極端な視点変化に直面した2次元幾何学を正確に決定する。
実験では, 大局的な視点変化に対して, 突如として頑健さと弾力性を示した。
- 参考スコア(独自算出の注目度): 21.16779160086591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human has an incredible ability to effortlessly perceive the viewpoint
difference between two images containing the same object, even when the
viewpoint change is astonishingly vast with no co-visible regions in the
images. This remarkable skill, however, has proven to be a challenge for
existing camera pose estimation methods, which often fail when faced with large
viewpoint differences due to the lack of overlapping local features for
matching. In this paper, we aim to effectively harness the power of object
priors to accurately determine two-view geometry in the face of extreme
viewpoint changes. In our method, we first mathematically transform the
relative camera pose estimation problem to an object pose estimation problem.
Then, to estimate the object pose, we utilize the object priors learned from a
diffusion model Zero123 to synthesize novel-view images of the object. The
novel-view images are matched to determine the object pose and thus the
two-view camera pose. In experiments, our method has demonstrated extraordinary
robustness and resilience to large viewpoint changes, consistently estimating
two-view poses with exceptional generalization ability across both synthetic
and real-world datasets. Code will be available at
https://github.com/scy639/Extreme-Two-View-Geometry-From-Object-Poses-with-Diffusion-Models.
- Abstract(参考訳): 人間は、同じ物体を含む2つの画像の視点の違いを、同じ視覚領域が存在しないという驚くほど大きな変化であっても、力ずくで知覚することができる。
しかし、この顕著な技術は既存のカメラポーズ推定手法の課題であり、マッチングに重複する局所的な特徴が欠如しているため、大きな視点の違いに直面して失敗することが多い。
本稿では,オブジェクトのパワーを効果的に活用し,極端な視点変化に直面した2視点形状を正確に決定することを目的とする。
本稿では,まず,相対カメラのポーズ推定問題をオブジェクトのポーズ推定問題に数学的に変換する。
そして、オブジェクトのポーズを推定するために、拡散モデルZero123から得られたオブジェクトの事前情報を用いて、オブジェクトの新規ビュー画像を合成する。
新規ビュー画像が一致してオブジェクトのポーズが決定され、2ビューカメラのポーズが決定される。
実験では,大局的な視点変化に対する特異なロバスト性およびレジリエンスを示し,合成および実世界のデータセットにまたがる例外的な一般化能力を持つ2視点ポーズを連続的に推定した。
コードはhttps://github.com/scy639/Extreme-Two-View-Geometry-From-Object-Poses-with-Diffusion-Modelsで入手できる。
関連論文リスト
- Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching [19.730504197461144]
本稿では,RGB画像のみを用いてオブジェクトのポーズを決定するために,新しい一般化可能なオブジェクトポーズ推定手法を提案する。
本手法は,オブジェクトの参照画像1枚で操作し,3次元オブジェクトモデルやオブジェクトの複数ビューの必要性を解消する。
論文 参考訳(メタデータ) (2024-11-24T14:31:50Z) - iFusion: Inverting Diffusion for Pose-Free Reconstruction from Sparse
Views [61.707755434165335]
iFusionは、未知のカメラポーズを持つ2つのビューのみを必要とする、新しい3Dオブジェクト再構成フレームワークである。
我々は,様々な物体の形状や外観に関する暗黙の知識を組み込んだ,事前学習されたビュー合成拡散モデルを利用する。
ポーズ推定と新しいビュー合成の両方において、実験は強い性能を示す。
論文 参考訳(メタデータ) (2023-12-28T18:59:57Z) - 3D-Aware Hypothesis & Verification for Generalizable Relative Object
Pose Estimation [69.73691477825079]
一般化可能なオブジェクトポーズ推定の問題に対処する新しい仮説検証フレームワークを提案する。
信頼性を計測するために,2つの入力画像から学習した3次元オブジェクト表現に3次元変換を明示的に適用する3D認識検証を導入する。
論文 参考訳(メタデータ) (2023-10-05T13:34:07Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
この研究は、カメラのポーズやオブジェクトのカテゴリを知らない少数の画像から、一般的な現実世界のオブジェクトを再構築する。
私たちの研究の要点は、形状再構成とポーズ推定という、2つの基本的な3D視覚問題を解決することです。
提案手法は,各ビューから3次元特徴を予測し,それらを入力画像と組み合わせて活用し,クロスビュー対応を確立する。
論文 参考訳(メタデータ) (2022-12-08T18:59:02Z) - DSC-PoseNet: Learning 6DoF Object Pose Estimation via Dual-scale
Consistency [43.09728251735362]
2Dオブジェクト境界ボックスから6DoFオブジェクトポーズを得るための2ステップポーズ推定フレームワークを提案する。
最初のステップでは、フレームワークはオブジェクトを実際のデータと合成データからセグメンテーションすることを学ぶ。
第2のステップでは,dsc-posenetという,デュアルスケールなポーズ推定ネットワークを設計する。
提案手法は,合成データに基づいて訓練した最先端のモデルよりも大きなマージンで優れる。
論文 参考訳(メタデータ) (2021-04-08T10:19:35Z) - CosyPose: Consistent multi-view multi-object 6D pose estimation [48.097599674329004]
単視点単体6次元ポーズ推定法を提案し、6次元オブジェクトのポーズ仮説を生成する。
第2に、異なる入力画像間で個々の6次元オブジェクトのポーズをマッチングするロバストな手法を開発する。
第3に、複数のオブジェクト仮説とそれらの対応性を考慮したグローバルなシーン改善手法を開発した。
論文 参考訳(メタデータ) (2020-08-19T14:11:56Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。