Evading Data Contamination Detection for Language Models is (too) Easy
- URL: http://arxiv.org/abs/2402.02823v2
- Date: Mon, 12 Feb 2024 17:50:07 GMT
- Title: Evading Data Contamination Detection for Language Models is (too) Easy
- Authors: Jasper Dekoninck, Mark Niklas M\"uller, Maximilian Baader, Marc
Fischer, Martin Vechev
- Abstract summary: Large language models can inadvertently lead to contamination with public benchmarks.
We propose a categorization of both model providers and contamination detection methods.
This reveals vulnerabilities in existing methods that we exploit with EAL.
- Score: 9.024665800235855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models are widespread, with their performance on benchmarks
frequently guiding user preferences for one model over another. However, the
vast amount of data these models are trained on can inadvertently lead to
contamination with public benchmarks, thus compromising performance
measurements. While recently developed contamination detection methods try to
address this issue, they overlook the possibility of deliberate contamination
by malicious model providers aiming to evade detection. We argue that this
setting is of crucial importance as it casts doubt on the reliability of public
benchmarks. To more rigorously study this issue, we propose a categorization of
both model providers and contamination detection methods. This reveals
vulnerabilities in existing methods that we exploit with EAL, a simple yet
effective contamination technique that significantly inflates benchmark
performance while completely evading current detection methods.
Related papers
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Adversarially Robust Industrial Anomaly Detection Through Diffusion Model [23.97654469255749]
We propose a simple yet effective adversarially robust anomaly detection method, textitAdvRAD, that allows the diffusion model to act both as an anomaly detector and adversarial purifier.
Our proposed method exhibits outstanding (certified) adversarial robustness while also maintaining equally strong anomaly detection performance on par with the state-of-the-art methods on industrial anomaly detection benchmark datasets.
arXiv Detail & Related papers (2024-08-09T03:25:19Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks.
This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications.
We introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs.
arXiv Detail & Related papers (2024-06-26T13:12:40Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - ConStat: Performance-Based Contamination Detection in Large Language Models [7.305342793164905]
ConStat is a statistical method that reliably detects and quantifies contamination by comparing performance between a primary and reference benchmark relative to a set of reference models.
We demonstrate the effectiveness of ConStat in an extensive evaluation of diverse model architectures, benchmarks, and contamination scenarios.
arXiv Detail & Related papers (2024-05-25T15:36:37Z) - Scalable Ensemble-based Detection Method against Adversarial Attacks for
speaker verification [73.30974350776636]
This paper comprehensively compares mainstream purification techniques in a unified framework.
We propose an easy-to-follow ensemble approach that integrates advanced purification modules for detection.
arXiv Detail & Related papers (2023-12-14T03:04:05Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
Large language models are increasingly trained on all the data ever produced by humans.
Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets.
arXiv Detail & Related papers (2023-11-08T17:35:20Z) - Estimating Contamination via Perplexity: Quantifying Memorisation in
Language Model Evaluation [2.4173424114751114]
We propose a novel method to quantify contamination without the access of the full training set.
Our analysis provides evidence of significant memorisation of recent foundation models in popular reading comprehension, summarisation benchmarks, while multiple choice appears less contaminated.
arXiv Detail & Related papers (2023-09-19T15:02:58Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
Non-robust features can be easily manipulated by adversaries to fool NLP models.
In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory.
We show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy.
arXiv Detail & Related papers (2022-06-11T12:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.