PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models
- URL: http://arxiv.org/abs/2406.18326v1
- Date: Wed, 26 Jun 2024 13:12:40 GMT
- Title: PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models
- Authors: Huixuan Zhang, Yun Lin, Xiaojun Wan,
- Abstract summary: Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks.
This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications.
We introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs.
- Score: 41.772263447213234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks. This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications. To address this benchmark contamination problem, we first propose a set of requirements that practical contamination detection methods should follow. Following these proposed requirements, we introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs. Our method constructs a counterpart for each piece of data with the same distribution, and performs statistical analysis of the corresponding confidence to test whether the model is significantly more confident under the original benchmark. We validate the effectiveness of PaCoST and apply it on popular open-source models and benchmarks. We find that almost all models and benchmarks we tested are suspected contaminated more or less. We finally call for new LLM evaluation methods.
Related papers
- ConStat: Performance-Based Contamination Detection in Large Language Models [7.305342793164905]
ConStat is a statistical method that reliably detects and quantifies contamination by comparing performance between a primary and reference benchmark relative to a set of reference models.
We demonstrate the effectiveness of ConStat in an extensive evaluation of diverse model architectures, benchmarks, and contamination scenarios.
arXiv Detail & Related papers (2024-05-25T15:36:37Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEval is a Knowledge-grounded Interactive Evaluation framework for large language models.
It incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation.
Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization.
arXiv Detail & Related papers (2024-02-23T01:30:39Z) - Evading Data Contamination Detection for Language Models is (too) Easy [9.024665800235855]
Large language models can inadvertently lead to contamination with public benchmarks.
We propose a categorization of both model providers and contamination detection methods.
This reveals vulnerabilities in existing methods that we exploit with EAL.
arXiv Detail & Related papers (2024-02-05T09:10:32Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
Large language models are increasingly trained on all the data ever produced by humans.
Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets.
arXiv Detail & Related papers (2023-11-08T17:35:20Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination
for each Benchmark [19.875954121100005]
We argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble.
The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark.
This position paper defines different levels of data contamination and argues for a community effort.
arXiv Detail & Related papers (2023-10-27T09:48:29Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.