論文の概要: Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs
- arxiv url: http://arxiv.org/abs/2402.02957v2
- Date: Fri, 31 May 2024 16:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:03:18.353606
- Title: Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs
- Title(参考訳): 協調UAVによるセル通信のオフロードのためのマルチエージェント強化学習
- Authors: Abhishek Mondal, Deepak Mishra, Ganesh Prasad, George C. Alexandropoulos, Azzam Alnahari, Riku Jantti,
- Abstract要約: 無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 21.195346908715972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective solutions for intelligent data collection in terrestrial cellular networks are crucial, especially in the context of Internet of Things applications. The limited spectrum and coverage area of terrestrial base stations pose challenges in meeting the escalating data rate demands of network users. Unmanned aerial vehicles, known for their high agility, mobility, and flexibility, present an alternative means to offload data traffic from terrestrial BSs, serving as additional access points. This paper introduces a novel approach to efficiently maximize the utilization of multiple UAVs for data traffic offloading from terrestrial BSs. Specifically, the focus is on maximizing user association with UAVs by jointly optimizing UAV trajectories and users association indicators under quality of service constraints. Since, the formulated UAVs control problem is nonconvex and combinatorial, this study leverages the multi agent reinforcement learning framework. In this framework, each UAV acts as an independent agent, aiming to maintain inter UAV cooperative behavior. The proposed approach utilizes the finite state Markov decision process to account for UAVs velocity constraints and the relationship between their trajectories and state space. A low complexity distributed state action reward state action algorithm is presented to determine UAVs optimal sequential decision making policies over training episodes. The extensive simulation results validate the proposed analysis and offer valuable insights into the optimal UAV trajectories. The derived trajectories demonstrate superior average UAV association performance compared to benchmark techniques such as Q learning and particle swarm optimization.
- Abstract(参考訳): 地上のセルネットワークにおけるインテリジェントなデータ収集の効果的なソリューションは、特にモノのインターネット(Internet of Things)アプリケーションにおいて重要である。
地上基地局の限られたスペクトルと範囲は、ネットワークユーザのデータレート要求の増大に対応する上での課題となる。
高度の機敏性、機動性、柔軟性で知られる無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供し、追加のアクセスポイントとして機能する。
本稿では,地上BSからのデータトラフィックオフロードに複数のUAVを効率的に利用するための新しい手法を提案する。
具体的には、UAVトラジェクトリとユーザ関連指標をサービス品質の制約下で協調的に最適化することで、UAVとのユーザ関連を最大化することに焦点を当てている。
定式化UAV制御問題は非凸かつ組合せ的であるため,本研究はマルチエージェント強化学習フレームワークを活用する。
この枠組みでは、それぞれのUAVが独立したエージェントとして機能し、UAV間の協調行動を維持することを目的としている。
提案手法は, 有限状態マルコフ決定プロセスを用いて, UAVの速度制約と軌道と状態空間の関係を考察する。
低複雑性な分散状態行動報酬状態行動アルゴリズムが提示され、トレーニングエピソードよりもUAVの最適な逐次決定ポリシーを決定する。
シミュレーションの結果は、提案した解析を検証し、最適なUAV軌道に関する貴重な知見を提供する。
得られた軌道は,Qラーニングや粒子群最適化などのベンチマーク手法と比較して,平均UAVアソシエーション性能が優れている。
関連論文リスト
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
無人航空機(UAV)は、広い地域をカバーし、困難で危険な目標地域にアクセスする能力のため、ここ数年で大きな関心を集めている。
コンピュータビジョンと機械学習の進歩により、UAVは幅広いソリューションやアプリケーションに採用されている。
ディープニューラルネットワーク(DNN)は、それらがオンボードで実行されるのを防ぐ、より深く複雑なモデルに向かって進んでいる。
論文 参考訳(メタデータ) (2021-05-23T20:19:43Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
無人航空機(UAV)は、データ収集、人工知能(AI)モデルトレーニング、無線通信をサポートする飛行基地局(BS)として機能する。
モデルトレーニングのためにUAVサーバにデバイスの生データを送信するのは現実的ではない。
本稿では,マルチUAV対応ネットワークのための非同期フェデレーション学習フレームワークを開発する。
論文 参考訳(メタデータ) (2020-11-28T18:58:34Z) - Multi-Agent Deep Reinforcement Learning Based Trajectory Planning for
Multi-UAV Assisted Mobile Edge Computing [99.27205900403578]
無人航空機(UAV)支援移動エッジコンピューティング(MEC)フレームワークを提案する。
我々は,全ユーザ機器(UE)の地理的公正性と,各UAVのUE負荷の公平性を共同で最適化することを目的としている。
提案手法は他の従来のアルゴリズムよりもかなり性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-23T17:44:07Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。