論文の概要: EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.03049v4
- Date: Mon, 24 Jun 2024 02:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 02:11:02.829624
- Title: EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
- Title(参考訳): Easy Instruct: 大規模言語モデルのための使いやすい命令処理フレームワーク
- Authors: Yixin Ou, Ningyu Zhang, Honghao Gui, Ziwen Xu, Shuofei Qiao, Yida Xue, Runnan Fang, Kangwei Liu, Lei Li, Zhen Bi, Guozhou Zheng, Huajun Chen,
- Abstract要約: EasyInstructは、Large Language Models (LLMs)のための使いやすい命令処理フレームワークである。
EasyInstructは命令生成、選択、プロンプトをモジュール化し、それらの組み合わせと相互作用も考慮する。
- 参考スコア(独自算出の注目度): 37.80143756214926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, instruction tuning has gained increasing attention and emerged as a crucial technique to enhance the capabilities of Large Language Models (LLMs). To construct high-quality instruction datasets, many instruction processing approaches have been proposed, aiming to achieve a delicate balance between data quantity and data quality. Nevertheless, due to inconsistencies that persist among various instruction processing methods, there is no standard open-source instruction processing implementation framework available for the community, which hinders practitioners from further developing and advancing. To facilitate instruction processing research and development, we present EasyInstruct, an easy-to-use instruction processing framework for LLMs, which modularizes instruction generation, selection, and prompting, while also considering their combination and interaction. EasyInstruct is publicly released and actively maintained at https://github.com/zjunlp/EasyInstruct, along with an online demo app and a demo video for quick-start, calling for broader research centered on instruction data and synthetic data.
- Abstract(参考訳): 近年,大規模言語モデル(LLM)の能力向上のための重要な技術として,命令チューニングが注目されている。
高品質な命令データセットを構築するために,データ量とデータ品質の微妙なバランスを実現するために,多くの命令処理手法が提案されている。
しかし、様々な命令処理方法に矛盾があるため、コミュニティで利用可能な標準のオープンソース命令処理実装フレームワークが存在しないため、実践者がさらなる開発や進歩を妨げている。
命令処理の研究と開発を容易にするために,命令生成,選択,プロンプトをモジュール化し,それらの組み合わせや相互作用を考慮しつつ,LLMの使い易い命令処理フレームワークであるEasyInstructを提案する。
EasyInstructはhttps://github.com/zjunlp/EasyInstructで公開され、オンラインデモアプリとクイックスタート用のデモビデオとともに、インストラクションデータと合成データを中心とした広範な研究を求めている。
関連論文リスト
- Controllable Navigation Instruction Generation with Chain of Thought Prompting [74.34604350917273]
本稿では,C-インストラクタを提案する。C-インストラクタは,スタイル制御およびコンテンツ制御可能な命令生成のために,チェーン・オブ・シンクタスタイルのプロンプトを利用する。
C-インストラクタは生成した命令をより追従しやすくし、ランドマークオブジェクトの操作に対する制御性を高める。
論文 参考訳(メタデータ) (2024-07-10T07:37:20Z) - Phased Instruction Fine-Tuning for Large Language Models [12.037895935630882]
Phased IFT(Phased Instruction Fine-Tuning)を提案する。
GPT-4を用いて命令の難易度を評価し、命令データを難易度の高いサブセットに分割し、これらのサブセット上でモデルを逐次訓練する。
アルパカデータを用いたLlama-2 7B/13B/70B、Llama3 8/70B、Mistral-7Bモデルによる実験では、フェーズドIFTは1オフIFTよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-06-01T04:25:26Z) - Mosaic IT: Enhancing Instruction Tuning with Data Mosaics [30.82220015525281]
大規模な言語モデルを微調整するための人間/モデルなしの手法であるMosaic Instruction Tuning(Mosaic-IT)を紹介する。
Mosaic-ITはランダムに複数の命令データを1つにまとめ、対応する応答を生成するようモデルを訓練する。
評価の結果,モザイクITの性能と訓練効率が向上した。
論文 参考訳(メタデータ) (2024-05-22T04:08:20Z) - Conifer: Improving Complex Constrained Instruction-Following Ability of Large Language Models [23.17547206140014]
大規模言語モデルのための命令チューニングデータセットであるConiferを紹介する。
複雑な制約のある命令に従うために、Coniferでモデルをトレーニングします。
いくつかのインストラクション追従ベンチマークでは、我々の7Bモデルは最先端のオープンソース7Bモデルよりも優れています。
論文 参考訳(メタデータ) (2024-04-03T15:55:39Z) - Towards Robust Instruction Tuning on Multimodal Large Language Models [25.506776502317436]
本研究では,マルチモーダルタスクにおいて,INSTRAUGという自動命令拡張手法を導入する。
2つの人気のあるマルチモーダル命令フォローベンチマークの結果、INSTRAUGは12のマルチモーダルタスク間でのMLLM(Multimodal Large Language Model)のアライメントを大幅に改善できることが示された。
論文 参考訳(メタデータ) (2024-02-22T12:35:50Z) - Kun: Answer Polishment for Chinese Self-Alignment with Instruction
Back-Translation [51.43576926422795]
Kunは、手動のアノテーションに頼ることなく、大きな言語モデル(LLM)のための高品質な命令チューニングデータセットを作成するための新しいアプローチである。
我々は、Wudao、Wanjuan、SkyPileなど、さまざまな情報源から収集された不正なデータを活用して、100万以上の中国語の命令データポイントの実質的なデータセットを生成します。
論文 参考訳(メタデータ) (2024-01-12T09:56:57Z) - Ada-Instruct: Adapting Instruction Generators for Complex Reasoning [17.07852413707166]
Ada-Instruct は,オープンソース LLM の微調整によって開発された適応型命令生成器である。
我々はAda-Instructの有効性を、コード補完、数学的推論、常識推論を含む様々なアプリケーションで実証的に検証した。
論文 参考訳(メタデータ) (2023-10-06T13:28:04Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Improving Long-Horizon Imitation Through Instruction Prediction [93.47416552953075]
本研究では、しばしば使われない補助的監督源である言語の使用について検討する。
近年のトランスフォーマーモデルの発展にインスパイアされたエージェントは,高レベルの抽象化で動作する時間拡張表現の学習を促す命令予測損失を持つエージェントを訓練する。
さらなる分析では、複雑な推論を必要とするタスクにおいて、命令モデリングが最も重要であり、単純な計画を必要とする環境において、より小さなゲインを提供する。
論文 参考訳(メタデータ) (2023-06-21T20:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。