AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey
- URL: http://arxiv.org/abs/2402.03093v3
- Date: Thu, 11 Jul 2024 06:50:50 GMT
- Title: AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey
- Authors: Yixuan Wu, Kaiyuan Hu, Danny Z. Chen, Jian Wu,
- Abstract summary: We present a comprehensive examination of the burgeoning field of AI-enhanced VR applications in medical care and services.
By introducing a systematic taxonomy, we meticulously classify the pertinent techniques and applications into three well-defined categories.
This categorization enables a structured exploration of the diverse roles that AI-powered VR plays in the medical domain.
- Score: 16.66549936852184
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the rapid advance of computer graphics and artificial intelligence technologies, the ways we interact with the world have undergone a transformative shift. Virtual Reality (VR) technology, aided by artificial intelligence (AI), has emerged as a dominant interaction media in multiple application areas, thanks to its advantage of providing users with immersive experiences. Among those applications, medicine is considered one of the most promising areas. In this paper, we present a comprehensive examination of the burgeoning field of AI-enhanced VR applications in medical care and services. By introducing a systematic taxonomy, we meticulously classify the pertinent techniques and applications into three well-defined categories based on different phases of medical diagnosis and treatment: Visualization Enhancement, VR-related Medical Data Processing, and VR-assisted Intervention. This categorization enables a structured exploration of the diverse roles that AI-powered VR plays in the medical domain, providing a framework for a more comprehensive understanding and evaluation of these technologies. To our best knowledge, this is the first systematic survey of AI-powered VR systems in medical settings, laying a foundation for future research in this interdisciplinary domain.
Related papers
- Thelxinoƫ: Recognizing Human Emotions Using Pupillometry and Machine Learning [0.0]
This research contributes significantly to the Thelxino"e framework, aiming to enhance VR experiences by integrating multiple sensor data for realistic and emotionally resonant touch interactions.
Our findings open new avenues for developing more immersive and interactive VR environments, paving the way for future advancements in virtual touch technology.
arXiv Detail & Related papers (2024-03-27T21:14:17Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Multisensory extended reality applications offer benefits for volumetric biomedical image analysis in research and medicine [2.46537907738351]
3D data from high-resolution volumetric imaging is a central resource for diagnosis and treatment in modern medicine.
Recent research used extended reality (XR) for perceiving 3D images with visual depth perception and touch but used restrictive haptic devices.
In this study, 24 experts for biomedical images in research and medicine explored 3D medical shapes with 3 applications.
arXiv Detail & Related papers (2023-11-07T13:37:47Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - AI in Telemedicine: An Appraisal on Deep Learning-Based Approaches to
Virtual Diagnostic Solutions (VDS) [0.0]
This paper explores AI's implementations in healthcare delivery with a more holistic view of the usability of various Telemedical Innovations.
This research gives a general overview of Artificial Intelligence in Telemedicine with a central focus on Deep Learning-based approaches to Virtual Diagnostic Solutions.
arXiv Detail & Related papers (2022-07-31T09:01:25Z) - Artificial Intelligence for the Metaverse: A Survey [66.57225253532748]
We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse.
We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse.
Several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds.
arXiv Detail & Related papers (2022-02-15T03:34:56Z) - Wireless Edge-Empowered Metaverse: A Learning-Based Incentive Mechanism
for Virtual Reality [102.4151387131726]
We propose a learning-based Incentive Mechanism framework for VR services in the Metaverse.
First, we propose the quality of perception as the metric for VR users in the virtual world.
Second, for quick trading of VR services between VR users (i.e., buyers) and VR SPs (i.e., sellers), we design a double Dutch auction mechanism.
Third, for auction communication reduction, we design a deep reinforcement learning-based auctioneer to accelerate this auction process.
arXiv Detail & Related papers (2021-11-07T13:02:52Z) - Surgical Visual Domain Adaptation: Results from the MICCAI 2020
SurgVisDom Challenge [9.986124942784969]
This work seeks to explore the potential for visual domain adaptation in surgery to overcome data privacy concerns.
In particular, we propose to use video from virtual reality (VR) simulations of surgical exercises to develop algorithms to recognize tasks in a clinical-like setting.
We present the performance of the different approaches to solve visual domain adaptation developed by challenge participants.
arXiv Detail & Related papers (2021-02-26T18:45:28Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
Augmented reality (AR), virtual reality (VR) and mixed reality (MR) are technologies of great potential due to the engaging and enriching experiences they are capable of providing.
However, the possibilities that AR, VR and MR offer in the area of environmental applications are not yet widely explored.
We present the outcome of a survey meant to discover and classify existing AR/VR/MR applications that can benefit the environment or increase awareness on environmental issues.
arXiv Detail & Related papers (2020-08-27T09:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.