Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis
- URL: http://arxiv.org/abs/2403.17549v1
- Date: Tue, 26 Mar 2024 09:55:49 GMT
- Title: Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis
- Authors: Jingyu Xu, Binbin Wu, Jiaxin Huang, Yulu Gong, Yifan Zhang, Bo Liu,
- Abstract summary: The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
- Score: 17.4235794108467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The medical field is one of the important fields in the application of artificial intelligence technology. With the explosive growth and diversification of medical data, as well as the continuous improvement of medical needs and challenges, artificial intelligence technology is playing an increasingly important role in the medical field. Artificial intelligence technologies represented by computer vision, natural language processing, and machine learning have been widely penetrated into diverse scenarios such as medical imaging, health management, medical information, and drug research and development, and have become an important driving force for improving the level and quality of medical services.The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data, enhance images, aid in anomaly detection, and facilitate image-to-image translation. Despite challenges like model complexity, the applications of generative models in healthcare, including Med-PaLM 2 technology, show promising results. By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes. However, ethical considerations and collaboration among stakeholders are essential for responsible implementation. Through experiments leveraging GANs to augment brain tumor MRI datasets, the study demonstrates how generative AI can enhance image quality and diversity, ultimately advancing medical diagnostics and patient care.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system.
Traditional methods of generating medical reports from retinal images rely on manual interpretation.
This thesis investigates the potential of Artificial Intelligence to automate medical report generation for retinal images.
arXiv Detail & Related papers (2024-08-14T07:47:25Z) - Rapid Review of Generative AI in Smart Medical Applications [3.068678059223457]
Generative models, a key AI technology, have revolutionized medical image generation, data analysis, and diagnosis.
This article explores their application in intelligent medical devices.
Generative models show great promise in medical image generation, data analysis, and diagnosis.
arXiv Detail & Related papers (2024-06-08T03:34:47Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - A Comprehensive Review of Generative AI in Healthcare [0.0]
generative AI models, specifically transformers and diffusion models, have played a crucial role in analyzing diverse forms of data.
These models have played a crucial role in analyzing diverse forms of data, including medical imaging, protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing.
This review paper aims to offer a thorough overview of the generative AI applications in healthcare, focusing on transformers and diffusion models.
arXiv Detail & Related papers (2023-10-01T21:13:14Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium.
We identify barriers between AI-model development in research labs and subsequent clinical deployment.
We discuss various AI integration points in a clinical Radiology workflow.
arXiv Detail & Related papers (2022-12-29T05:17:59Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Medical Imaging and Machine Learning [16.240472115235253]
The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging.
Data availability, need for novel computing architectures and explainable AI algorithms, are still relevant.
In this paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations.
arXiv Detail & Related papers (2021-03-02T18:53:39Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.