User Centric Evaluation of Code Generation Tools
- URL: http://arxiv.org/abs/2402.03130v3
- Date: Tue, 18 Jun 2024 13:45:05 GMT
- Title: User Centric Evaluation of Code Generation Tools
- Authors: Tanha Miah, Hong Zhu,
- Abstract summary: This paper proposes a user centric method for evaluating the usability of large language models (LLMs)
It includes metadata in the test cases of a benchmark to describe their usages, conducts testing in a multi-attempt process that mimics the uses of LLMs, measures LLM generated solutions on a set of quality attributes that reflect usability, and evaluates the performance based on user experiences in the uses of LLMs as a tool.
- Score: 2.8115477071897788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advance of machine learning (ML) technology, large language models (LLMs) are increasingly explored as an intelligent tool to generate program code from natural language specifications. However, existing evaluations of LLMs have focused on their capabilities in comparison with humans. It is desirable to evaluate their usability when deciding on whether to use a LLM in software production. This paper proposes a user centric method for this purpose. It includes metadata in the test cases of a benchmark to describe their usages, conducts testing in a multi-attempt process that mimics the uses of LLMs, measures LLM generated solutions on a set of quality attributes that reflect usability, and evaluates the performance based on user experiences in the uses of LLMs as a tool. The paper also reports a case study with the method in the evaluation of ChatGPT's usability as a code generation tool for the R programming language. Our experiments demonstrated that ChatGPT is highly useful for generating R program code although it may fail on hard programming tasks. The user experiences are good with overall average number of attempts being 1.61 and the average time of completion being 47.02 seconds. Our experiments also found that the weakest aspect of usability is conciseness, which has a score of 3.80 out of 5.
Related papers
- Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
Large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone.
We evaluate the performance of LLMs tool-use under imperfect instructions, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench.
We propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions.
arXiv Detail & Related papers (2024-08-31T23:06:12Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.
Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.
We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing.
The potential to transform natural language prompts into executable code promises a major shift in software development practices.
arXiv Detail & Related papers (2023-11-10T23:41:41Z) - MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language
Feedback [78.60644407028022]
We introduce MINT, a benchmark that evaluates large language models' ability to solve tasks with multi-turn interactions.
LLMs generally benefit from tools and language feedback, with performance gains of 1-8% for each turn of tool use.
LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities.
arXiv Detail & Related papers (2023-09-19T15:25:42Z) - Calculating Originality of LLM Assisted Source Code [0.0]
We propose a neural network-based tool to determine the original effort (and LLM's contribution) put by students in writing source codes.
Our tool is motivated by minimum description length measures like Kolmogorov complexity.
arXiv Detail & Related papers (2023-07-10T11:30:46Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.