Beyond the Black Box: A Statistical Model for LLM Reasoning and Inference
- URL: http://arxiv.org/abs/2402.03175v2
- Date: Tue, 24 Sep 2024 13:30:25 GMT
- Title: Beyond the Black Box: A Statistical Model for LLM Reasoning and Inference
- Authors: Siddhartha Dalal, Vishal Misra,
- Abstract summary: This paper introduces a novel Bayesian learning model to explain the behavior of Large Language Models (LLMs)
We develop a theoretical framework based on an ideal generative text model represented by a multinomial transition probability matrix with a prior, and examine how LLMs approximate this matrix.
- Score: 0.9898607871253774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel Bayesian learning model to explain the behavior of Large Language Models (LLMs), focusing on their core optimization metric of next token prediction. We develop a theoretical framework based on an ideal generative text model represented by a multinomial transition probability matrix with a prior, and examine how LLMs approximate this matrix. Key contributions include: (i) a continuity theorem relating embeddings to multinomial distributions, (ii) a demonstration that LLM text generation aligns with Bayesian learning principles, (iii) an explanation for the emergence of in-context learning in larger models, (iv) empirical validation using visualizations of next token probabilities from an instrumented Llama model Our findings provide new insights into LLM functioning, offering a statistical foundation for understanding their capabilities and limitations. This framework has implications for LLM design, training, and application, potentially guiding future developments in the field.
Related papers
- Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
We introduce a learning analytics framework to analyze the in-context learning (ICL) behavior of large language models (LLMs)
We adapt the Zone of Proximal Development (ZPD) theory to ICL, measuring the ZPD of LLMs based on model performance on individual examples.
Our findings reveal a series of intricate and multifaceted behaviors of ICL, providing new insights into understanding and leveraging this technique.
arXiv Detail & Related papers (2025-02-10T19:36:21Z) - Large Language Models as Markov Chains [7.078696932669912]
We draw an equivalence between autoregressive transformer-based language models and Markov chains defined on a finite state space.
We relate the obtained results to the pathological behavior observed with LLMs.
Experiments with the most recent Llama and Gemma herds of models show that our theory correctly captures their behavior in practice.
arXiv Detail & Related papers (2024-10-03T17:45:31Z) - A Law of Next-Token Prediction in Large Language Models [30.265295018979078]
We introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained large language models.
Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer.
arXiv Detail & Related papers (2024-08-24T02:48:40Z) - Beam Prediction based on Large Language Models [51.45077318268427]
We formulate the millimeter wave (mmWave) beam prediction problem as a time series forecasting task.
We transform historical observations into text-based representations using a trainable tokenizer.
Our method harnesses the power of LLMs to predict future optimal beams.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
Large Language Models (LLMs) have demonstrated exceptional capabilities in complex tasks like machine translation, commonsense reasoning, and language understanding.
One of the primary reasons for the adaptability of LLMs in such diverse tasks is their in-context learning (ICL) capability, which allows them to perform well on new tasks by simply using a few task samples in the prompt.
We propose a novel framework, In-Context Explainers, comprising of three novel approaches that exploit the ICL capabilities of LLMs to explain the predictions made by other predictive models.
arXiv Detail & Related papers (2023-10-09T15:31:03Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.