Investigating the Zone of Proximal Development of Language Models for In-Context Learning
- URL: http://arxiv.org/abs/2502.06990v1
- Date: Mon, 10 Feb 2025 19:36:21 GMT
- Title: Investigating the Zone of Proximal Development of Language Models for In-Context Learning
- Authors: Peng Cui, Mrinmaya Sachan,
- Abstract summary: We introduce a learning analytics framework to analyze the in-context learning (ICL) behavior of large language models (LLMs)
We adapt the Zone of Proximal Development (ZPD) theory to ICL, measuring the ZPD of LLMs based on model performance on individual examples.
Our findings reveal a series of intricate and multifaceted behaviors of ICL, providing new insights into understanding and leveraging this technique.
- Score: 59.91708683601029
- License:
- Abstract: In this paper, we introduce a learning analytics framework to analyze the in-context learning (ICL) behavior of large language models (LLMs) through the lens of the Zone of Proximal Development (ZPD), an established theory in educational psychology. ZPD delineates the space between what a learner is capable of doing unsupported and what the learner cannot do even with support. We adapt this concept to ICL, measuring the ZPD of LLMs based on model performance on individual examples with and without ICL. Furthermore, we propose an item response theory (IRT) model to predict the distribution of zones for LLMs. Our findings reveal a series of intricate and multifaceted behaviors of ICL, providing new insights into understanding and leveraging this technique. Finally, we demonstrate how our framework can enhance LLM in both inference and fine-tuning scenarios: (1) By predicting a model's zone of proximal development, we selectively apply ICL to queries that are most likely to benefit from demonstrations, achieving a better balance between inference cost and performance; (2) We propose a human-like curriculum for fine-tuning, which prioritizes examples within the model's ZPD. The curriculum results in improved performance, and we explain its effectiveness through an analysis of the training dynamics of LLMs.
Related papers
- Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
We investigate how pre-trained Large Language Models can be leveraged to predict in context the dynamics of continuous Markov decision processes.
We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning.
arXiv Detail & Related papers (2024-10-15T15:46:53Z) - Bias Amplification in Language Model Evolution: An Iterated Learning Perspective [27.63295869974611]
We draw parallels between the behavior of Large Language Models (LLMs) and the evolution of human culture.
Our approach involves leveraging Iterated Learning (IL), a Bayesian framework that elucidates how subtle biases are magnified during human cultural evolution.
This paper outlines key characteristics of agents' behavior in the Bayesian-IL framework, including predictions that are supported by experimental verification.
arXiv Detail & Related papers (2024-04-04T02:01:25Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Beyond the Black Box: A Statistical Model for LLM Reasoning and Inference [0.9898607871253774]
This paper introduces a novel Bayesian learning model to explain the behavior of Large Language Models (LLMs)
We develop a theoretical framework based on an ideal generative text model represented by a multinomial transition probability matrix with a prior, and examine how LLMs approximate this matrix.
arXiv Detail & Related papers (2024-02-05T16:42:10Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
We establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process.
This is the first theoretical guarantee for these two coupled ODL components: optimization and learning.
arXiv Detail & Related papers (2023-02-11T03:35:13Z) - A Survey on In-context Learning [77.78614055956365]
In-context learning (ICL) has emerged as a new paradigm for natural language processing (NLP)
We first present a formal definition of ICL and clarify its correlation to related studies.
We then organize and discuss advanced techniques, including training strategies, prompt designing strategies, and related analysis.
arXiv Detail & Related papers (2022-12-31T15:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.