論文の概要: HEANA: A Hybrid Time-Amplitude Analog Optical Accelerator with Flexible Dataflows for Energy-Efficient CNN Inference
- arxiv url: http://arxiv.org/abs/2402.03247v3
- Date: Sun, 15 Dec 2024 19:36:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:20.974793
- Title: HEANA: A Hybrid Time-Amplitude Analog Optical Accelerator with Flexible Dataflows for Energy-Efficient CNN Inference
- Title(参考訳): HEANA:エネルギー効率の良いCNN推論のためのフレキシブルデータフローを持つハイブリッド時間振幅アナログ光加速器
- Authors: Sairam Sri Vatsavai, Venkata Sai Praneeth Karempudi, Ishan Thakkar,
- Abstract要約: 本稿では、HEANAと呼ばれる新しいハイブリッドTimE Amplitude aNalog光加速器を提案する。
HEANAは、複数のデータフローをサポートするためのHEANAの柔軟性を高めるために、ハイブリッド時間振幅アナログ光乗算器(TAOM)を採用している。
現代CNNの4つの評価から, HEANAはFPS(F frames-per-second)とFPS/W(エネルギー効率)において最大66倍, 84倍の改善を実現していることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Several photonic microring resonators (MRRs) based analog accelerators have been proposed to accelerate the inference of integer-quantized CNNs with remarkably higher throughput and energy efficiency compared to their electronic counterparts. However, the existing analog photonic accelerators suffer from three shortcomings: (i) severe hampering of wavelength parallelism due to various crosstalk effects, (ii) inflexibility of supporting various dataflows other than the weight-stationary dataflow, and (iii) failure in fully leveraging the ability of photodetectors to perform in-situ accumulations. These shortcomings collectively hamper the performance and energy efficiency of prior accelerators. To tackle these shortcomings, we present a novel Hybrid timE Amplitude aNalog optical Accelerator, called HEANA. HEANA employs hybrid time-amplitude analog optical multipliers (TAOMs) that increase the flexibility of HEANA to support multiple dataflows. A spectrally hitless arrangement of TAOMs significantly reduces the crosstalk effects, thereby increasing the wavelength parallelism in HEANA. Moreover, HEANA employs our invented balanced photo-charge accumulators (BPCAs) that enable buffer-less, in-situ, temporal accumulations to eliminate the need to use reduction networks in HEANA, relieving it from related latency and energy overheads. Our evaluation for the inference of four modern CNNs indicates that HEANA provides improvements of atleast 66x and 84x in frames-per-second (FPS) and FPS/W (energy-efficiency), respectively, for equal-area comparisons, on gmean over two MRR-based analog CNN accelerators from prior work.
- Abstract(参考訳): いくつかのフォトニックマイクロリング共振器(MRR)をベースとしたアナログ加速器は、電子回路に比べて非常に高いスループットとエネルギー効率で整数量子化CNNの推論を高速化するために提案されている。
しかし、既存のアナログフォトニック加速器には3つの欠点がある。
一 様々なクロストーク効果による波長並列性の厳しい妨害
二 重量定常データフロー以外の各種データフローを支持できないこと、及び
三)光検出器がその場で蓄積する能力を完全に活用できないこと。
これらの欠点は、以前の加速器の性能とエネルギー効率を総括的に妨げている。
これらの欠点に対処するため,Hybrid timE Amplitude aNalog optical Accelerator(HEANA)を提案する。
HEANAは、複数のデータフローをサポートするためのHEANAの柔軟性を高めるために、ハイブリッド時間振幅アナログ光乗算器(TAOM)を採用している。
TAOMのスペクトル的ヒットレス配置はクロストーク効果を著しく低減し、HEANAの波長並列性を高める。
さらに, HEANAでは, バッファレス, その場, 時間的蓄積が可能な平衡光電荷蓄積器 (BPCA) を用いて, HEANAの低減ネットワークを不要にし, 関連する遅延やエネルギーオーバーヘッドを軽減している。
近年の4つのCNNを推定すると、HEANAはフレーム毎秒(FPS)とFPS/W(エネルギ効率)において最大66倍と84倍の改善を提供しており、それぞれが等価領域の比較において、MRRをベースとした2つのアナログCNNアクセラレーターのgmean上で先行研究を行った。
関連論文リスト
- Efficient Synaptic Delay Implementation in Digital Event-Driven AI Accelerators [1.260842513389711]
本稿では,デジタルニューロモルフィックアクセラレータ上でのシナプス遅延をサポートするハードウェア構造であるShared Circular Delay Queue (SCDQ)を紹介する。
分析とハードウェアの結果から、現在の一般的なアプローチよりもメモリのスケールが優れており、アルゴリズムとハードウェアの共最適化にはさらに耐え難いことが分かる。
論文 参考訳(メタデータ) (2025-01-23T12:30:04Z) - UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks [71.23793087286703]
無人航空機(UAV)は、航空無線ネットワークと通信を確立するためのプラットフォームとして注目されている。
本稿では,複数UAVネットワークシステムにおける協調ビームフォーミング(CB)法に基づく新しいアップリンク干渉緩和手法を提案する。
論文 参考訳(メタデータ) (2024-12-09T12:56:50Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - OFDM-Standard Compatible SC-NOFS Waveforms for Low-Latency and Jitter-Tolerance Industrial IoT Communications [53.398544571833135]
この研究は、スペクトル的に効率的な不規則なSinc (irSinc) 整形法を提案し、1924年に従来のSincを再考した。
irSincは、誤差性能を犠牲にすることなくスペクトル効率が向上した信号を生成する。
我々の信号は、5G標準信号構成により、同じスペクトル帯域内で高速なデータ伝送を実現する。
論文 参考訳(メタデータ) (2024-06-07T09:20:30Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
我々は,TMPOと呼ばれる時間多重化動的フォトニックテンソルアクセラレータを,クロス層デバイス/回路/アーキテクチャのカスタマイズにより提案する。
我々は,368.6TOPSピーク性能,22.3TOPS/Wエネルギー効率,1.2TOPS/mm$2$計算密度を実現した。
この研究は、多層共設計とドメイン固有のカスタマイズの力を示し、将来の電子フォトニクス加速器への道を開く。
論文 参考訳(メタデータ) (2024-02-12T03:40:32Z) - Analysis of Optical Loss and Crosstalk Noise in MZI-based Coherent
Photonic Neural Networks [8.930237478906266]
シリコンフォトニックベースのニューラルネットワーク(SP-NN)アクセラレーターは、電子加速器に代わる有望な代替品として登場した。
本稿ではボトムアップ手法を用いて,光損失とクロストークノイズを包括的にモデル化する。
異なるスケールのSP-NNに対して,高出力のペナルティと破滅的推論精度が最大84%低下することを示す。
論文 参考訳(メタデータ) (2023-08-07T02:01:18Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - Hybrid Parallel Imaging and Compressed Sensing MRI Reconstruction with
GRAPPA Integrated Multi-loss Supervised GAN [2.7110495144693374]
本稿では, 再構成画像のデエイリアスのために, マルチモーダルな損失を抑える新しいGAN(Generative Adversarial Network)を提案する。
提案手法は, 画像品質の向上に寄与し, 5倍, 10倍の高速化を実現した。
論文 参考訳(メタデータ) (2022-09-19T07:26:45Z) - ATTACC the Quadratic Bottleneck of Attention Layers [3.2741800634280245]
本稿では、ディープニューラルネットワーク(DNN)アクセラレーターのための新しいアテンション調整データフローであるFLATを紹介する。
高帯域幅で低容量のオンチップバッファを効率的に利用することで、効果的なメモリ帯域幅を増大させる。
評価では,ATTACCは最先端エッジやクラウドアクセラレータと比較して1.94倍,1.76倍,49%,42%のエネルギー削減を達成した。
論文 参考訳(メタデータ) (2021-07-13T22:23:40Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。