論文の概要: DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open
Language Models
- arxiv url: http://arxiv.org/abs/2402.03300v2
- Date: Tue, 6 Feb 2024 18:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 11:14:52.306273
- Title: DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open
Language Models
- Title(参考訳): DeepSeekMath:オープン言語モデルにおける数学的推論の限界を押し上げる
- Authors: Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song,
Mingchuan Zhang, Y.K. Li, Y. Wu, Daya Guo
- Abstract要約: 我々は,DeepSeek-Coder-Base-v1.5 7Bの事前トレーニングを継続するDeepSeekMath 7Bを紹介した。
DeepSeekMath 7Bは、競争レベルのMATHベンチマークで51.7%のスコアを獲得した。
- 参考スコア(独自算出の注目度): 34.32545003616562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical reasoning poses a significant challenge for language models due
to its complex and structured nature. In this paper, we introduce DeepSeekMath
7B, which continues pre-training DeepSeek-Coder-Base-v1.5 7B with 120B
math-related tokens sourced from Common Crawl, together with natural language
and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the
competition-level MATH benchmark without relying on external toolkits and
voting techniques, approaching the performance level of Gemini-Ultra and GPT-4.
Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH.
The mathematical reasoning capability of DeepSeekMath is attributed to two key
factors: First, we harness the significant potential of publicly available web
data through a meticulously engineered data selection pipeline. Second, we
introduce Group Relative Policy Optimization (GRPO), a variant of Proximal
Policy Optimization (PPO), that enhances mathematical reasoning abilities while
concurrently optimizing the memory usage of PPO.
- Abstract(参考訳): 数学的推論は、その複雑で構造化された性質から、言語モデルにとって大きな課題となる。
本稿では,DeepSeek-Coder-Base-v1.5 7Bの事前学習を継続するDeepSeekMath 7Bを紹介する。
DeepSeekMath 7Bは、外部ツールキットや投票技術に頼ることなく、競合レベルのMATHベンチマークで51.7%のスコアを獲得し、Gemini-UltraとGPT-4のパフォーマンスレベルに近づいた。
DeepSeekMath 7Bの64以上のサンプルはMATHで60.9%を達成している。
deepseekmathの数学的推論能力は、2つの重要な要因によって引き起こされている。
第2に、PPOのメモリ使用量を同時に最適化しながら、数学的推論能力を向上させるPPOの変種であるグループ相対ポリシー最適化(GRPO)を導入する。
関連論文リスト
- Preference Optimization for Reasoning with Pseudo Feedback [100.62603571434167]
提案手法では,解のラベル付けを関連するテストケースに対する評価として行うことで,推論タスクに対する疑似フィードバックを生成する手法を提案する。
本研究では,擬似フィードバックを優先最適化に用いる数学的推論と符号化の両タスクについて実験を行い,両タスク間の改善を観察する。
論文 参考訳(メタデータ) (2024-11-25T12:44:02Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
本稿では,モデル性能をさらに向上させるために,補完的な直接選好学習手法について検討する。
既存の直接選好学習アルゴリズムは、もともとシングルターンチャットタスク用に設計されている。
この文脈に合わせたマルチターン直接選好学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T02:41:04Z) - DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning [24.68321102981711]
本稿では,数理推論にコードアシストと自己補正を併用した思考の分解を利用した大規模言語モデル(LLM)について紹介する。
DotaMathモデルは複雑な数学的タスクに対処し、それらをより単純な論理的なサブタスクに分解し、コードを利用してこれらのサブタスクを解決する。
そこで我々は,DotaMathQAの模倣学習を用いて,オープンソースのLLMと比較して優れた性能を示すDotaMathモデルを訓練した。
論文 参考訳(メタデータ) (2024-07-04T17:39:16Z) - MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning [11.426127461122908]
この研究には、マルチパースペクティブなデータ拡張手法による新しい数学の質問が含まれ、その上でコードネストされたソリューションを合成する。
外部Pythonインタプリタと統合したオープン大言語モデル(LLM)は、数学的推論能力を大幅に強化した。
ステージ1では、純粋なCoTデータに基づいてLlama-2を微調整し、中間モデルを取得し、ステージ2のコードネストデータに基づいてトレーニングし、結果のMuMath-Codeを得る。
論文 参考訳(メタデータ) (2024-05-13T08:32:19Z) - Advancing LLM Reasoning Generalists with Preference Trees [119.57169648859707]
推論に最適化された大規模言語モデル(LLM)のスイートであるEulusを紹介する。
Eurusモデルは、様々なベンチマークでオープンソースのモデルの間で最先端の結果を得る。
論文 参考訳(メタデータ) (2024-04-02T16:25:30Z) - Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning [110.80663974060624]
キーポイント駆動型データ合成(KPDDS)は質問応答対を合成する新しいデータ合成フレームワークである。
KPDDSは厳格な品質管理と相当なスケーラビリティを備えた新しい質問の生成を保証する。
KPMathは,800万以上の質問応答対から構成される,数学的推論に適した広範囲な合成データセットである。
論文 参考訳(メタデータ) (2024-03-04T18:58:30Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
我々は,大規模言語モデル(LLM)の本質的な性質が,数学的推論のモデル化における課題を提起していると仮定する。
本稿では,Pythonコードインタプリタを利用した新しい数学データセットを提案する。
本稿では,数学固有のLLMの微調整のための仮的かつ容易に複製可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2024-01-16T08:08:01Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
本稿では,オープンソース言語モデルを微調整する手法を提案する。
本稿では,問題のある新しい,高品質なデータセットを生成する手法とそのコードベースソリューションを提案する。
このアプローチは、問題の解決にコードベースのソリューションを生成することができるモデルのファミリーであるMathCoderモデルを生成する。
論文 参考訳(メタデータ) (2023-10-05T17:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。