Test-Time Adaptation for Depth Completion
- URL: http://arxiv.org/abs/2402.03312v4
- Date: Mon, 27 May 2024 16:39:45 GMT
- Title: Test-Time Adaptation for Depth Completion
- Authors: Hyoungseob Park, Anjali Gupta, Alex Wong,
- Abstract summary: It is common to observe performance degradation when transferring models trained on some (source) datasets to target testing data due to a domain gap between them.
We propose an online test-time adaptation method for depth completion, the task of inferring a dense depth map from a single image and associated sparse depth map, that closes the performance gap in a single pass.
- Score: 9.304152205375757
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It is common to observe performance degradation when transferring models trained on some (source) datasets to target testing data due to a domain gap between them. Existing methods for bridging this gap, such as domain adaptation (DA), may require the source data on which the model was trained (often not available), while others, i.e., source-free DA, require many passes through the testing data. We propose an online test-time adaptation method for depth completion, the task of inferring a dense depth map from a single image and associated sparse depth map, that closes the performance gap in a single pass. We first present a study on how the domain shift in each data modality affects model performance. Based on our observations that the sparse depth modality exhibits a much smaller covariate shift than the image, we design an embedding module trained in the source domain that preserves a mapping from features encoding only sparse depth to those encoding image and sparse depth. During test time, sparse depth features are projected using this map as a proxy for source domain features and are used as guidance to train a set of auxiliary parameters (i.e., adaptation layer) to align image and sparse depth features from the target test domain to that of the source domain. We evaluate our method on indoor and outdoor scenarios and show that it improves over baselines by an average of 21.1%.
Related papers
- MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation [155.0797148367653]
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain and an unlabeled target domain.
We propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries.
We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks.
arXiv Detail & Related papers (2024-08-29T12:15:10Z) - Temporal Lidar Depth Completion [0.08192907805418582]
We show how a state-of-the-art method PENet can be modified to benefit from recurrency.
Our algorithm achieves state-of-the-art results on the KITTI depth completion dataset.
arXiv Detail & Related papers (2024-06-17T08:25:31Z) - Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging [2.024988885579277]
Generalizability of deep learning models may be severely affected by the difference in the distributions of the train (source domain) and the test (target domain) sets.
We propose a very light and transparent approach to perform test-time domain adaptation.
arXiv Detail & Related papers (2022-07-31T17:28:42Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem.
We propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer.
During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data.
arXiv Detail & Related papers (2022-03-10T18:51:29Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Self domain adapted network [6.040230864736051]
Domain shift is a major problem for deploying deep networks in clinical practice.
We propose a novel self domain adapted network (SDA-Net) that can rapidly adapt itself to a single test subject.
arXiv Detail & Related papers (2020-07-07T01:41:34Z) - Keep it Simple: Image Statistics Matching for Domain Adaptation [0.0]
Domain Adaptation (DA) is a technique to maintain detection accuracy when only unlabeled images are available of the target domain.
Recent state-of-the-art methods try to reduce the domain gap using an adversarial training strategy.
We propose to align either color histograms or mean and covariance of the source images towards the target domain.
In comparison to recent methods, we achieve state-of-the-art performance using a much simpler procedure for the training.
arXiv Detail & Related papers (2020-05-26T07:32:09Z) - iFAN: Image-Instance Full Alignment Networks for Adaptive Object
Detection [48.83883375118966]
iFAN aims to precisely align feature distributions on both image and instance levels.
It outperforms state-of-the-art methods with a boost of 10%+ AP over the source-only baseline.
arXiv Detail & Related papers (2020-03-09T13:27:06Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.