論文の概要: A generalized decision tree ensemble based on the NeuralNetworks
architecture: Distributed Gradient Boosting Forest (DGBF)
- arxiv url: http://arxiv.org/abs/2402.03386v1
- Date: Sun, 4 Feb 2024 09:22:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 18:36:20.948703
- Title: A generalized decision tree ensemble based on the NeuralNetworks
architecture: Distributed Gradient Boosting Forest (DGBF)
- Title(参考訳): ニューラルネットワークアーキテクチャに基づく一般化決定木アンサンブル:分散勾配ブースティングフォレスト(dgbf)
- Authors: \'Angel Delgado-Panadero, Jos\'e Alberto Ben\'itez-Andrades and
Mar\'ia Teresa Garc\'ia-Ord\'as
- Abstract要約: 本稿では,木間の分散表現学習を自然に行うグラフ構造木アンサンブルアルゴリズムを提案する。
我々は、この新しいアプローチを分散グラディエントブースティングフォレスト(DGBF)と呼び、RandomForestとGradientBoostingの両方がDGBFの特定のグラフアーキテクチャとして表現できることを実証する。
最後に、分散学習は、9つのデータセットのうち7つでRandomForestとGradientBoostingの両方に優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tree ensemble algorithms as RandomForest and GradientBoosting are currently
the dominant methods for modeling discrete or tabular data, however, they are
unable to perform a hierarchical representation learning from raw data as
NeuralNetworks does thanks to its multi-layered structure, which is a key
feature for DeepLearning problems and modeling unstructured data. This
limitation is due to the fact that tree algorithms can not be trained with
back-propagation because of their mathematical nature. However, in this work,
we demonstrate that the mathematical formulation of bagging and boosting can be
combined together to define a graph-structured-tree-ensemble algorithm with a
distributed representation learning process between trees naturally (without
using back-propagation). We call this novel approach Distributed Gradient
Boosting Forest (DGBF) and we demonstrate that both RandomForest and
GradientBoosting can be expressed as particular graph architectures of DGBT.
Finally, we see that the distributed learning outperforms both RandomForest and
GradientBoosting in 7 out of 9 datasets.
- Abstract(参考訳): RandomForestやGradientBoostingのようなツリーアンサンブルアルゴリズムは、現在、離散データや表形式のデータをモデリングする主要な方法であるが、NeuralNetworksが行っているように、その多層構造のおかげで、生データから階層的な表現学習を行うことはできない。
この制限は、木アルゴリズムがその数学的性質のためにバックプロパゲーションで訓練できないという事実による。
しかし本研究では,バグングとブースティングの数学的定式化を組み合わせることで,木間の分散表現学習プロセスが自然に (バックプロパゲーションを使わずに) グラフ構造木-センスブルアルゴリズムを定義できることを実証する。
我々はこの新しいアプローチを分散グラディエントブースティングフォレスト(DGBF)と呼び、RandomForestとGradientBoostingの両方がDGBTの特定のグラフアーキテクチャとして表現できることを示した。
最後に、分散学習は、9つのデータセットのうち7つでRandomForestとGradientBoostingの両方に優れています。
関連論文リスト
- Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - A Simple yet Effective Method for Graph Classification [7.397201068210497]
学習過程を簡素化しつつ,グラフ分類性能の向上の可能性を検討する。
グラフ上の構造エントロピーにヒントを得て、データサンプルをグラフからコードツリーに変換する。
本稿では,木カーネルと畳み込みネットワークを提案し,グラフ分類の手法を実装した。
論文 参考訳(メタデータ) (2022-06-06T07:24:44Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Convergent Boosted Smoothing for Modeling Graph Data with Tabular Node
Features [46.052312251801]
本稿では,グラフ伝播ステップでブースティングを反復するフレームワークを提案する。
我々のアプローチは、原則化されたメタロス関数に固定されている。
様々な非イドグラフデータセットに対して,本手法は同等あるいは優れた性能を実現する。
論文 参考訳(メタデータ) (2021-10-26T04:53:12Z) - Structural Optimization Makes Graph Classification Simpler and Better [5.770986723520119]
モデル学習プロセスを簡素化しつつ,グラフ分類性能の向上の可能性を検討する。
構造情報アセスメントの進歩に触発されて、グラフから木をコードするデータサンプルを最適化する。
本稿では,木カーネルと畳み込みネットワークにこのスキームを実装し,グラフ分類を行う。
論文 参考訳(メタデータ) (2021-09-05T08:54:38Z) - Learning subtree pattern importance for Weisfeiler-Lehmanbased graph
kernels [15.139294083028782]
WWLカーネルのフレームワークにおけるサブツリーパターンの重み付けを学習する手法を提案する。
本稿では,効率的な学習アルゴリズムを提案するとともに,その収束を示すための一般化ギャップを導出する。
論文 参考訳(メタデータ) (2021-06-08T23:47:44Z) - Non-Recursive Graph Convolutional Networks [33.459371861932574]
非再帰グラフ畳み込みネットワーク(NRGCN)と呼ばれる新しいアーキテクチャを提案し、GCNのトレーニング効率と学習パフォーマンスの両方を改善します。
NRGCNは、内部層凝集と層非依存サンプリングに基づいて、各ノードの隣人のホップを表す。
このようにして、各ノードは、隣人の各ホップから独立して抽出された情報を連結することで直接表現することができる。
論文 参考訳(メタデータ) (2021-05-09T08:12:18Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。