論文の概要: Extending RAIM with a Gaussian Mixture of Opportunistic Information
- arxiv url: http://arxiv.org/abs/2402.03449v1
- Date: Mon, 5 Feb 2024 19:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:48:02.422595
- Title: Extending RAIM with a Gaussian Mixture of Opportunistic Information
- Title(参考訳): 機会情報のガウス混合によるRAIMの拡張
- Authors: Wenjie Liu, Panos Papadimitratos,
- Abstract要約: 元の受信機自動整合性監視(RAIM)は安全のために設計されていない。
我々は、地上インフラや搭載センサーから得られるすべての機会情報、すなわち計測情報を組み込むことでRAIMを拡張した。
本研究の目的は,拡張RAIM溶液から得られる位置を解析し,スプーフィングの可能性を評価することである。
- 参考スコア(独自算出の注目度): 1.9688858888666714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GNSS are indispensable for various applications, but they are vulnerable to spoofing attacks. The original receiver autonomous integrity monitoring (RAIM) was not designed for securing GNSS. In this context, RAIM was extended with wireless signals, termed signals of opportunity (SOPs), or onboard sensors, typically assumed benign. However, attackers might also manipulate wireless networks, raising the need for a solution that considers untrustworthy SOPs. To address this, we extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors, culminating in one function for robust GNSS spoofing detection. The objective is to assess the likelihood of GNSS spoofing by analyzing locations derived from extended RAIM solutions, which include location solutions from GNSS pseudorange subsets and wireless signal subsets of untrusted networks. Our method comprises two pivotal components: subset generation and location fusion. Subsets of ranging information are created and processed through positioning algorithms, producing temporary locations. Onboard sensors provide speed, acceleration, and attitude data, aiding in location filtering based on motion constraints. The filtered locations, modeled with uncertainty, are fused into a composite likelihood function normalized for GNSS spoofing detection. Theoretical assessments of GNSS-only and multi-infrastructure scenarios under uncoordinated and coordinated attacks are conducted. The detection of these attacks is feasible when the number of benign subsets exceeds a specific threshold. A real-world dataset from the Kista area is used for experimental validation. Comparative analysis against baseline methods shows a significant improvement in detection accuracy achieved by our Gaussian Mixture RAIM approach. Moreover, we discuss leveraging RAIM results for plausible location recovery.
- Abstract(参考訳): GNSSは様々なアプリケーションに必須だが、攻撃に対して脆弱である。
元々の受信機自動整合性監視(RAIM)は、GNSSの確保のために設計されたものではない。
この文脈では、RAIMは無線信号(SOP)またはオンボードセンサー(通常は良心と仮定される)で拡張された。
しかし、攻撃者は無線ネットワークを操作する可能性もあり、信頼できないSOPを考慮に入れたソリューションの必要性が高まっている。
これを解決するため,地上のインフラや搭載センサーからの計測情報を全て組み込んでRAIMを拡張し,高機能なGNSSスプーフィング検出を行う。
本研究の目的は、GNSS疑似乱数サブセットと信頼できないネットワークの無線信号サブセットからのロケーションソリューションを含む拡張RAIMソリューションから得られる位置を解析することにより、GNSSスプーフィングの可能性を評価することである。
本手法は, 部分集合生成と位置融合の2つの主成分からなる。
位置情報のサブセットは、位置決めアルゴリズムによって作成および処理され、一時的な位置を生成する。
オンボードセンサーは速度、加速度、姿勢データを提供し、動きの制約に基づいて位置フィルタリングを支援する。
フィルタされた位置は不確実性でモデル化され、GNSSスプーフィング検出のために正規化された複合可能性関数に融合される。
非協調的および協調的攻撃下でのGNSSのみ及び多層構造シナリオの理論的評価を行う。
これらの攻撃の検出は、良性部分集合の数が特定のしきい値を超えた場合に実現可能である。
実験的な検証には、キスタ地域の実世界のデータセットが使用されている。
ベースライン法との比較分析では,ガウス混合RAIM法により検出精度が大幅に向上した。
また、RAIM結果の可視位置回復への活用についても論じる。
関連論文リスト
- Evaluating ML Robustness in GNSS Interference Classification, Characterization \& Localization [42.14439854721613]
ジャミング装置は、グローバルナビゲーション衛星システム(GNSS)からの信号を妨害することで重大な脅威をもたらす
周波数スナップショット内の異常の検出は、これらの干渉を効果的に対処するために重要である。
本稿では,制御されたマルチパス効果を含む大規模環境下での干渉をキャプチャする広範囲なデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-23T15:20:33Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
本研究は,マルチエージェント認識システムにおいて,特定のGPS信号が容易に誤認できるかどうかを考察する。
我々は,システム内の個々のエージェントに対してステルス性を持つ逆GPS信号を生成可能なtextscAdvGPSを紹介する。
OPV2Vデータセットに対する実験により、これらの攻撃が最先端の手法の性能を著しく損なうことを示した。
論文 参考訳(メタデータ) (2024-01-30T23:13:41Z) - Experimental Validation of Sensor Fusion-based GNSS Spoofing Attack
Detection Framework for Autonomous Vehicles [5.624009710240032]
本稿では,自動走行車に対するセンサフュージョンを用いたスプーフィング攻撃検出フレームワークを提案する。
アラバマ州タスカルーサで実験が行われ、都市部の道路構造を模倣している。
結果は、遅いドリフト攻撃を含む様々な高度なスプーフ攻撃を検出できるフレームワークの能力を実証している。
論文 参考訳(メタデータ) (2024-01-02T17:30:46Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Quantum secured LiDAR with Gaussian modulated coherent states [6.207058145190368]
古典的な信号に依存するLiDARシステムは、インターセプトと最近の偽造攻撃の影響を受けやすい。
本稿では,ガウス変調コヒーレント状態を用いた量子セキュアLiDARプロトコルを提案する。
論文 参考訳(メタデータ) (2023-08-23T14:45:39Z) - Deep Attention Recognition for Attack Identification in 5G UAV
scenarios: Novel Architecture and End-to-End Evaluation [3.3253720226707992]
5Gフレームワークに固有の堅牢なセキュリティ機能にもかかわらず、攻撃者は依然として5G無人航空機(UAV)の運用を妨害する方法を見つけるだろう。
我々は,認証されたUAVに埋め込まれた小さなディープネットワークに基づく攻撃を識別するためのソリューションとして,Deep Attention Recognition (DAtR)を提案する。
論文 参考訳(メタデータ) (2023-03-03T17:10:35Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
我々は,長期記憶(LSTM)モデルを用いた予測に基づくスプーフィング攻撃検出戦略を開発した。
現在の位置と直近の場所との間を走行する予測距離に基づいてしきい値を確立する。
分析の結果,予測に基づくスプーフ攻撃検出戦略により,リアルタイムで攻撃を検知できることが判明した。
論文 参考訳(メタデータ) (2020-10-16T18:26:59Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。