Empowering Language Models with Active Inquiry for Deeper Understanding
- URL: http://arxiv.org/abs/2402.03719v1
- Date: Tue, 6 Feb 2024 05:24:16 GMT
- Title: Empowering Language Models with Active Inquiry for Deeper Understanding
- Authors: Jing-Cheng Pang, Heng-Bo Fan, Pengyuan Wang, Jia-Hao Xiao, Nan Tang,
Si-Hang Yang, Chengxing Jia, Sheng-Jun Huang, Yang Yu
- Abstract summary: We introduce LaMAI (Language Model with Active Inquiry), designed to endow large language models with interactive engagement.
LaMAI uses active learning techniques to raise the most informative questions, fostering a dynamic bidirectional dialogue.
Our empirical studies, across a variety of complex datasets, demonstrate the effectiveness of LaMAI.
- Score: 31.11672018840381
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of large language models (LLMs) has revolutionized the way that we
interact with artificial intelligence systems through natural language.
However, LLMs often misinterpret user queries because of their uncertain
intention, leading to less helpful responses. In natural human interactions,
clarification is sought through targeted questioning to uncover obscure
information. Thus, in this paper, we introduce LaMAI (Language Model with
Active Inquiry), designed to endow LLMs with this same level of interactive
engagement. LaMAI leverages active learning techniques to raise the most
informative questions, fostering a dynamic bidirectional dialogue. This
approach not only narrows the contextual gap but also refines the output of the
LLMs, aligning it more closely with user expectations. Our empirical studies,
across a variety of complex datasets where LLMs have limited conversational
context, demonstrate the effectiveness of LaMAI. The method improves answer
accuracy from 31.9% to 50.9%, outperforming other leading question-answering
frameworks. Moreover, in scenarios involving human participants, LaMAI
consistently generates responses that are superior or comparable to baseline
methods in more than 82% of the cases. The applicability of LaMAI is further
evidenced by its successful integration with various LLMs, highlighting its
potential for the future of interactive language models.
Related papers
- NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
We focus on journalistic interviews, a domain rich in grounding communication and abundant in data.
We curate a dataset of 40,000 two-person informational interviews from NPR and CNN.
LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions.
arXiv Detail & Related papers (2024-11-21T01:37:38Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - DialogueLLM: Context and Emotion Knowledge-Tuned Large Language Models
for Emotion Recognition in Conversations [28.15933355881604]
Large language models (LLMs) have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks.
We propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models.
We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations datasets.
arXiv Detail & Related papers (2023-10-17T16:15:34Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
Multi-modal large language models (MLLMs) are trained based on large language models (LLM)
While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested.
We show that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment.
arXiv Detail & Related papers (2023-09-13T17:57:21Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
We focus on evaluating the efficacy of large language models (LLMs) in the realm of education.
We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios.
We also investigate the influence of various prompting techniques such as zero- and few-shot method.
We find that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems.
arXiv Detail & Related papers (2023-08-28T12:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.