Discovery of the Hidden World with Large Language Models
- URL: http://arxiv.org/abs/2402.03941v1
- Date: Tue, 6 Feb 2024 12:18:54 GMT
- Title: Discovery of the Hidden World with Large Language Models
- Authors: Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming Gong, James Cheng,
Bo Han, Kun Zhang
- Abstract summary: We introduce COAT: Causal representatiOn AssistanT.
COAT incorporates LLMs as a factor proposer that extracts the potential causal factors from unstructured data.
LLMs can also be instructed to provide additional information used to collect data values.
- Score: 100.38157787218044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Science originates with discovering new causal knowledge from a combination
of known facts and observations. Traditional causal discovery approaches mainly
rely on high-quality measured variables, usually given by human experts, to
find causal relations. However, the causal variables are usually unavailable in
a wide range of real-world applications. The rise of large language models
(LLMs) that are trained to learn rich knowledge from the massive observations
of the world, provides a new opportunity to assist with discovering high-level
hidden variables from the raw observational data. Therefore, we introduce COAT:
Causal representatiOn AssistanT. COAT incorporates LLMs as a factor proposer
that extracts the potential causal factors from unstructured data. Moreover,
LLMs can also be instructed to provide additional information used to collect
data values (e.g., annotation criteria) and to further parse the raw
unstructured data into structured data. The annotated data will be fed to a
causal learning module (e.g., the FCI algorithm) that provides both rigorous
explanations of the data, as well as useful feedback to further improve the
extraction of causal factors by LLMs. We verify the effectiveness of COAT in
uncovering the underlying causal system with two case studies of review rating
analysis and neuropathic diagnosis.
Related papers
- Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
Causal reasoning is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world.
Large language models (LLMs) can generate rationales for their outputs, but their ability to reliably perform causal reasoning remains uncertain.
arXiv Detail & Related papers (2024-10-22T04:18:19Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
We introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and Large Language Models.
The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner.
We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets.
arXiv Detail & Related papers (2024-05-02T21:27:45Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
Large Language Models (LLMs) exhibit exceptional abilities for causal analysis between concepts in numerous societally impactful domains.
Recent research on LLM performance in various causal discovery and inference tasks has given rise to a new ladder in the classical three-stage framework of causality.
We propose a novel framework that combines knowledge-based LLM causal analysis with data-driven causal structure learning.
arXiv Detail & Related papers (2023-06-29T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.