Discovery of the Hidden World with Large Language Models
- URL: http://arxiv.org/abs/2402.03941v1
- Date: Tue, 6 Feb 2024 12:18:54 GMT
- Title: Discovery of the Hidden World with Large Language Models
- Authors: Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming Gong, James Cheng,
Bo Han, Kun Zhang
- Abstract summary: We introduce COAT: Causal representatiOn AssistanT.
COAT incorporates LLMs as a factor proposer that extracts the potential causal factors from unstructured data.
LLMs can also be instructed to provide additional information used to collect data values.
- Score: 100.38157787218044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Science originates with discovering new causal knowledge from a combination
of known facts and observations. Traditional causal discovery approaches mainly
rely on high-quality measured variables, usually given by human experts, to
find causal relations. However, the causal variables are usually unavailable in
a wide range of real-world applications. The rise of large language models
(LLMs) that are trained to learn rich knowledge from the massive observations
of the world, provides a new opportunity to assist with discovering high-level
hidden variables from the raw observational data. Therefore, we introduce COAT:
Causal representatiOn AssistanT. COAT incorporates LLMs as a factor proposer
that extracts the potential causal factors from unstructured data. Moreover,
LLMs can also be instructed to provide additional information used to collect
data values (e.g., annotation criteria) and to further parse the raw
unstructured data into structured data. The annotated data will be fed to a
causal learning module (e.g., the FCI algorithm) that provides both rigorous
explanations of the data, as well as useful feedback to further improve the
extraction of causal factors by LLMs. We verify the effectiveness of COAT in
uncovering the underlying causal system with two case studies of review rating
analysis and neuropathic diagnosis.
Related papers
- Exploring Multi-Modal Integration with Tool-Augmented LLM Agents for Precise Causal Discovery [45.777770849667775]
Causal inference is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps.
We introduce MATMCD, a multi-agent system powered by tool-augmented LLMs.
Our empirical study suggests the significant potential of multi-modality enhanced causal discovery.
arXiv Detail & Related papers (2024-12-18T09:50:00Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
We introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and Large Language Models.
The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner.
We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets.
arXiv Detail & Related papers (2024-05-02T21:27:45Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.
In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.
These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Large Language Models for Causal Discovery: Current Landscape and Future Directions [5.540272236593385]
Causal discovery (CD) and Large Language Models (LLMs) have emerged as transformative fields in artificial intelligence.
This survey examines how LLMs are transforming CD across three key dimensions: direct causal extraction from text, integration of domain knowledge into statistical methods, and refinement of causal structures.
arXiv Detail & Related papers (2024-02-16T20:48:53Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
Large Language Models (LLMs) exhibit exceptional abilities for causal analysis between concepts in numerous societally impactful domains.
Recent research on LLM performance in various causal discovery and inference tasks has given rise to a new ladder in the classical three-stage framework of causality.
We propose a novel framework that combines knowledge-based LLM causal analysis with data-driven causal structure learning.
arXiv Detail & Related papers (2023-06-29T12:48:00Z) - Confounder Identification-free Causal Visual Feature Learning [84.28462256571822]
We propose a novel Confounder Identification-free Causal Visual Feature Learning (CICF) method, which obviates the need for identifying confounders.
CICF models the interventions among different samples based on front-door criterion, and then approximates the global-scope intervening effect upon the instance-level interventions.
We uncover the relation between CICF and the popular meta-learning strategy MAML, and provide an interpretation of why MAML works from the theoretical perspective.
arXiv Detail & Related papers (2021-11-26T10:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.