GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation
- URL: http://arxiv.org/abs/2410.08475v1
- Date: Fri, 11 Oct 2024 03:05:06 GMT
- Title: GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation
- Authors: Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, Alejandro Ribeiro,
- Abstract summary: Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
- Score: 108.2008975785364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing retrieval-based reasoning approaches for large language models (LLMs) heavily rely on the density and quality of the non-parametric knowledge source to provide domain knowledge and explicit reasoning chain. However, inclusive knowledge sources are expensive and sometimes infeasible to build for scientific or corner domains. To tackle the challenges, we introduce Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning framework that integrates the parametric and non-parametric memories to enhance both knowledge retrieval and faithful reasoning processes on very sparse knowledge graphs. By leveraging the external structured knowledge to inspire LLM to model the interconnections among relevant concepts, our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval. Specifically, the framework prompts LLMs to decompose the query into crucial concepts and attributes, construct entity groups with relevant entities, and build an augmented reasoning chain by probing potential relationships among node pairs across these entity groups. Our method incorporates both factual and extrapolated linkages to enable comprehensive understanding and response generation. Extensive experiments on reasoning-intense benchmarks on biomedical and commonsense QA demonstrate the effectiveness of our proposed method. Specifically, GIVE enables GPT3.5-turbo to outperform advanced models like GPT4 without any additional training cost, thereby underscoring the efficacy of integrating structured information and internal reasoning ability of LLMs for tackling specialized tasks with limited external resources.
Related papers
- Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
This paper focuses on the Question Answering over Knowledge Graph (KGQA) task.
It proposes an Explore-then-Determine (EtD) framework that synergizes Large Language Models with graph neural networks (GNNs) for reasoning over KGs.
EtD achieves state-of-the-art performance and generates faithful reasoning results.
arXiv Detail & Related papers (2024-06-03T09:38:28Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks.
We propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales from LLMs with augmented knowledge retrieved from an external knowledge base.
We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets.
arXiv Detail & Related papers (2023-05-28T13:00:00Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z) - Structured Knowledge Grounding for Question Answering [0.23068481501673416]
We propose to leverage the language and knowledge for knowledge based question-answering with flexibility, breadth of coverage and structured reasoning.
Specifically, we devise a knowledge construction method that retrieves the relevant context with a dynamic hop.
And we devise a deep fusion mechanism to further bridge the information exchanging bottleneck between the language and the knowledge.
arXiv Detail & Related papers (2022-09-17T08:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.