HEAM : Hashed Embedding Acceleration using Processing-In-Memory
- URL: http://arxiv.org/abs/2402.04032v3
- Date: Thu, 14 Mar 2024 09:29:12 GMT
- Title: HEAM : Hashed Embedding Acceleration using Processing-In-Memory
- Authors: Youngsuk Kim, Hyuk-Jae Lee, Chae Eun Rhee,
- Abstract summary: In today's data centers, personalized recommendation systems face challenges such as the need for large memory capacity and high bandwidth.
Previous approaches have relied on DIMM-based near-memory processing techniques or introduced 3D-stacked DRAM to address memory-bound issues.
This paper introduces HEAM, a heterogeneous memory architecture that integrates 3D-stacked DRAM with DIMM to accelerate recommendation systems.
- Score: 17.66751227197112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's data centers, personalized recommendation systems face challenges such as the need for large memory capacity and high bandwidth, especially when performing embedding operations. Previous approaches have relied on DIMM-based near-memory processing techniques or introduced 3D-stacked DRAM to address memory-bound issues and expand memory bandwidth. However, these solutions fall short when dealing with the expanding size of personalized recommendation systems. Recommendation models have grown to sizes exceeding tens of terabytes, making them challenging to run efficiently on traditional single-node inference servers. Although various algorithmic methods have been proposed to reduce embedding table capacity, they often result in increased memory access or inefficient utilization of memory resources. This paper introduces HEAM, a heterogeneous memory architecture that integrates 3D-stacked DRAM with DIMM to accelerate recommendation systems in which compositional embedding is utilized-a technique aimed at reducing the size of embedding tables. The architecture is organized into a three-tier memory hierarchy consisting of conventional DIMM, 3D-stacked DRAM with a base die-level Processing-In-Memory (PIM), and a bank group-level PIM incorporating lookup tables. This setup is specifically designed to accommodate the unique aspects of compositional embedding, such as temporal locality and embedding table capacity. This design effectively reduces bank access, improves access efficiency, and enhances overall throughput, resulting in a 6.3 times speedup and 58.9% energy savings compared to the baseline.
Related papers
- LiVOS: Light Video Object Segmentation with Gated Linear Matching [116.58237547253935]
LiVOS is a lightweight memory network that employs linear matching via linear attention.
For longer and higher-resolution videos, it matched STM-based methods with 53% less GPU memory and supports 4096p inference on a 32G consumer-grade GPU.
arXiv Detail & Related papers (2024-11-05T05:36:17Z) - B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
We develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an composable module.
B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens.
arXiv Detail & Related papers (2024-07-08T18:41:01Z) - A parallel evolutionary algorithm to optimize dynamic memory managers in embedded systems [4.651702738999686]
We present a novel parallel evolutionary algorithm for DMMs optimization in embedded systems.
Our framework is able to reach a speed-up of 86.40x when compared with other state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-28T15:47:25Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
We present a framework to tackle the memory explosion problem using memory replay techniques.
PDGNNs with Topology-aware Embedding Memory (TEM) significantly outperform state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-24T03:03:17Z) - DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference [4.718504401468233]
PIM solutions rely either on novel memory technologies that have yet to mature or bit-serial computations that have significant performance overhead and scalability issues.
Our work proposes an in-SRAM digital multiplier, that uses a conventional memory to perform bit-parallel computations, leveraging multiple wordlines activation.
We then introduce DAISM, an architecture leveraging this multiplier, which achieves up to two orders of magnitude higher area efficiency compared to the SOTA counterparts, with competitive energy efficiency.
arXiv Detail & Related papers (2023-05-12T10:58:21Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - PIM-DRAM:Accelerating Machine Learning Workloads using Processing in
Memory based on DRAM Technology [2.6168147530506958]
We propose a processing-in-memory (PIM) multiplication primitive to accelerate matrix vector operations in ML workloads.
We show that the proposed architecture, mapping, and data flow can provide up to 23x and 6.5x benefits over a GPU.
arXiv Detail & Related papers (2021-05-08T16:39:24Z) - Continual Learning Approach for Improving the Data and Computation
Mapping in Near-Memory Processing System [3.202860612193139]
We propose an artificially intelligent memory mapping scheme, AIMM, that optimize data placement and resource utilization through page and computation remapping.
AIMM uses a neural network to achieve a near-optimal mapping during execution, trained using a reinforcement learning algorithm.
Our experimental evaluation shows that AIMM improves the baseline NMP performance in single and multiple program scenario by up to 70% and 50%, respectively.
arXiv Detail & Related papers (2021-04-28T09:50:35Z) - Semantically Constrained Memory Allocation (SCMA) for Embedding in
Efficient Recommendation Systems [27.419109620575313]
A key challenge for deep learning models is to work with millions of categorical classes or tokens.
We propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information.
We demonstrate a significant reduction in the memory footprint while maintaining performance.
arXiv Detail & Related papers (2021-02-24T19:55:49Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.