DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference
- URL: http://arxiv.org/abs/2305.07376v2
- Date: Thu, 18 Jan 2024 10:22:03 GMT
- Title: DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference
- Authors: Lorenzo Sonnino, Shaswot Shresthamali, Yuan He and Masaaki Kondo
- Abstract summary: PIM solutions rely either on novel memory technologies that have yet to mature or bit-serial computations that have significant performance overhead and scalability issues.
Our work proposes an in-SRAM digital multiplier, that uses a conventional memory to perform bit-parallel computations, leveraging multiple wordlines activation.
We then introduce DAISM, an architecture leveraging this multiplier, which achieves up to two orders of magnitude higher area efficiency compared to the SOTA counterparts, with competitive energy efficiency.
- Score: 4.718504401468233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DNNs are widely used but face significant computational costs due to matrix
multiplications, especially from data movement between the memory and
processing units. One promising approach is therefore Processing-in-Memory as
it greatly reduces this overhead. However, most PIM solutions rely either on
novel memory technologies that have yet to mature or bit-serial computations
that have significant performance overhead and scalability issues. Our work
proposes an in-SRAM digital multiplier, that uses a conventional memory to
perform bit-parallel computations, leveraging multiple wordlines activation. We
then introduce DAISM, an architecture leveraging this multiplier, which
achieves up to two orders of magnitude higher area efficiency compared to the
SOTA counterparts, with competitive energy efficiency.
Related papers
- Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
arXiv Detail & Related papers (2024-09-26T14:17:58Z) - CHIME: Energy-Efficient STT-RAM-based Concurrent Hierarchical In-Memory Processing [1.5566524830295307]
This paper introduces a novel PiC/PiM architecture, Concurrent Hierarchical In-Memory Processing (CHIME)
CHIME strategically incorporates heterogeneous compute units across multiple levels of the memory hierarchy.
Experiments reveal that, compared to the state-of-the-art bit-line computing approaches, CHIME achieves significant speedup and energy savings of 57.95% and 78.23%.
arXiv Detail & Related papers (2024-07-29T01:17:54Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
We introduce OPIMA, a processing-in-memory (PIM)-based machine learning accelerator.
PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks.
We show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
arXiv Detail & Related papers (2024-07-11T06:12:04Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Containing Analog Data Deluge at Edge through Frequency-Domain
Compression in Collaborative Compute-in-Memory Networks [0.0]
This paper proposes a novel solution to improve area efficiency in deep learning inference tasks.
By processing analog data more efficiently, it is possible to selectively retain valuable data from sensors and alleviate the challenges posed by the analog data deluge.
arXiv Detail & Related papers (2023-09-20T03:52:04Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) is a blockwise computation of self-attention and feedforward network fusion to minimize memory costs.
By processing longer input sequences while maintaining memory efficiency, BPT enables training sequences 32 times longer than vanilla Transformers and up to 4 times longer than previous memory-efficient methods.
arXiv Detail & Related papers (2023-05-30T19:25:51Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
Deep neural networks (DNNs) come with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage.
We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation.
We show that SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
arXiv Detail & Related papers (2021-01-04T18:54:07Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
This paper presents an in-memory computing architecture for ANN enabling artificial intelligence (AI) and machine learning (ML) applications.
Our novel on-chip training and inference in-memory architecture reduces energy cost and enhances throughput by simultaneously accessing the multiple rows of array per precharge cycle.
The proposed architecture was trained and tested on the IRIS dataset which exhibits $46times$ more energy efficient per MAC (multiply and accumulate) operation compared to earlier classifiers.
arXiv Detail & Related papers (2020-05-19T15:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.